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Abstract— In this paper, we present a framework for trust-
aware sequential decision-making in a human-robot team. We
model the problem as a finite-horizon Markov Decision Process
with a reward-based performance metric, allowing the robotic
agent to make trust-aware recommendations. Results of a
human-subject experiment show that the proposed trust update
model is able to accurately capture the human agent’s moment-
to-moment trust changes. Moreover, we cluster the participants’
trust dynamics into three categories, namely, Bayesian decision
makers, oscillators, and disbelievers, and identify personal
characteristics that could be used to predict which type of trust
dynamics a person will belong to. We find that the disbelievers
are less extroverted, less agreeable, and have lower expectations
toward the robotic agent, compared to the Bayesian decision
makers and oscillators. The oscillators are significantly more
frustrated than the Bayesian decision makers.

I. INTRODUCTION

Trust has been identified as a key factor for effective human-
robot interaction. Consequently, substantial research efforts
have been devoted to identifying factors that influence hu-
mans’ trust in robots [1], developing computational models
for trust estimation [2], [3], and developing trust-aware
robots [4], [5].

Previous computational models of trust [2], [3] require bi-
nary performance measures of the autonomy. However, such
measures cannot be directly applied in scenarios wherein the
robotic agent needs to perform complex trade off decisions
to maximize the cumulative reward and hence the auton-
omy performance is more difficult to quantify. In addition,
although previous studies have revealed the existence of
different types of trust dynamics [3], [6], no research has
tried to associate personal characteristics with the type of
trust dynamics.

To fill these research gaps, we develop a novel reward-
based performance metric to drive the trust estimation algo-
rithm in a Markov Decision Process (MDP). The proposed
performance metric is a binary surrogate of the autonomous
agent’s reward function, which allows our autonomous agent
to utilize the trust update model developed in [3] for trust-
aware decision-making. Moreover, from the data collected
through human-subject experiments, we analyze how hu-
man trust evolves with their earned reward over repeated
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interactions with the autonomy. We find three distinct types
of trust dynamics through k−means clustering analysis and
examine associations between personal characteristics and
type of trust dynamics.

II. RELATED WORK

Extensive work has been done in identifying factors that
affect trust in automation. However, most of these studies
provide a snapshot view of trust, and failed to characterize
the dynamics of trust [7]. More recently, dynamic models
of trust has been proposed, including the auto-regressive
moving average vector (ARMAV) model [8], the Online
Probabilistic Trust Inference Model (OPTIMo) model [2],
and the experience-based model [3]. These models enable a
robot to estimate a human’s trust in real time and has led
to the development of trust-aware robots, allowing robots to
reason upon human trust in their planning [4], [5], [9], [10].

Most existing research investigating individual differences
aims to find associations between (snapshot) trust and in-
dividual characteristics, including propensity to trust au-
tomation [11], personality trait of neuroticism [12], and
dispositional expectations of technology [13], [14]. It is pos-
sible that these individual differences will be differentially
represented within trust profiles related to trust dynamics.
Recent research [3] reveal the existence of different types of
trust dynamics, namely, rational decision maker, oscillator,
and disbeliever. It is reasonable to investigate the association
between a human agent’s trust dynamics and factors that are
shown to affect a human agent’s (snapshot) trust.

III. PROBLEM FORMULATION

In this section, we propose a finite horizon Markov De-
cision Process (MDP) for modeling and incorporating trust
in the decision-making system of a robotic agent. The robot
provides recommendations to its human partner about the
action that they should take, but the final decision lies with
the human. The specific scenario we target is an ’Intelligence,
Surveillance, and Reconnaissance’ (ISR) mission in which a
human soldier teams up with an intelligent drone to search
through a town for threats. The drone guides the soldier on
whether s/he should breach a site directly or deploy a Robotic
Armored Rescue Vehicle (RARV). Using the RARV prevents
any health loss to the soldier in the presence of a threat but
takes additional time to the team; on the contrary, breaching
a site directly is faster, but the soldier will be harmed if s/he
encounters a threat. Here, two natural (but conflicting) goals
that arise are to minimize any damage to the soldier and
minimize the time to search through all the sites.



The key components of the MDP model of the ISR mission
are given below.

1) States: We use the estimated trust of the human on
the robot as the state. Specifically, we use the trust model
in [3], wherein trust level at the ith stage, ti, follows a Beta
distribution, i.e., ti ∼ Beta(αi,βi), where αi and βi are the
positive experience and negative experience at time i. And,
the state at stage i is specified by the tuple (αi,βi).

2) Actions: The drone has two actions: Recommend to
use or not use the RARV.

3) Human behavior model: We assume that human will
accept the recommendation given by the robotic agent with
probability ti; and the human chooses the opposite action of
the one that was recommended with probability 1− ti.

4) Reward function: We use the weighted sum of the
health loss cost and the time cost to define the cost of
choosing an action. Similar to [5], we add a trust-gaining
term to incentivize the autonomous agent to gain trust. As a
result, the reward Ri at the ith stage is defined as

Ri(a) =−whh(a)−wcc(a)+ γi ·1(A), (1)

where wh and wc are the weights for the health loss cost
and time loss cost respectively. We define A as the event
when trust increases, i.e., 1(A) = 1 if the performance of
the autonomous agent is a success and 1(A) = 0 otherwise.
γi(= wt

√
N − i) is a weight given to the trust gain reward

that decreases with the stage number. The idea behind this
is to support trust-gaining behavior near the current stage,
and task performance optimizing behavior towards the later
stages of planning.

5) Transition function: The state (αi,βi) is updated by

(αi,βi) =

{
(αi−1 +ws,βi−1) if pi = 1,(
αi−1,βi−1 +w f

)
if pi = 0.

(2)

Here, pi is the autonomous agent’s performance at the ith

stage. Since the team’s goal is to maximize earned reward,
we define pi = 1 if at the ith site, the immediate reward
for following the recommendation by the drone was greater
than that for not following the recommendation and pi = 0
otherwise.

We fit the parameters (α0,β0,ws,w f ) for each participant
to model their trust dynamics. We use gradient descent to
estimate the parameters in real time after each feedback from
the participant. We use value iteration to solve the MDP.

IV. EXPERIMENT

This section describes details of the human-subject exper-
iment. The experiment complied with the American Psycho-
logical Association code of ethics and was approved by the
Institutional Review Board at the University of Michigan.

A. Participants

A total of 46 adults participated in the study. One par-
ticipant’s data was discarded as the participant failed the
attention check. The remaining 45 participants consisted of
21 females and 24 males (Age: Mean = 22.8 years, SD = 3.6

years). Each participant was reimbursed with a base pay of
$20 with a bonus of up to $10 based on their performance,
which was measured by the time taken by the participants
to complete the task and the final health level of the soldier.

B. Testbed

We developed a 3D testbed in Unreal Engine. A screenshot
of the testbed is shown in Fig. 1(a). Fig. 1(b) shows the
recommendation dialog box where the participant was rec-
ommended to not use the RARV. After choosing an action,
the four possibilities depending on the presence of threat
and participant’s selected actions are shown in Fig. 2. The
participants are told that if they encounter a threat without
the RARV, they will lose 5 points of health. They were told
that deploying the RARV takes about 10 seconds. They were
told to choose an action based on their interaction history and
the recommendation. Their goal was to minimize the time
taken for the mission, while maintaining the soldier’s health.

(a) A view of the testbed (b) An example of the GUI

Fig. 1. The testbed developed in the Unreal Engine 4 game engine

(a) No Threat, RARV Not Used (b) No Threat, RARV Used

(c) Threat, RARV Not Used (d) Threat, RARV Used

Fig. 2. The outcomes based on threat presence and action chosen.

C. Measures

1) Personality: The big 5 factors of personality (Extraver-
sion, Conscientiousness, Agreeableness, Neuroticism, and
Imagination) were measured using the 20-item mini-IPIP
scale [15]. This 5-point Likert scale has widely been used in
human-robot trust research [16].

2) Propensity to Trust: Propensity to trust autonomous
systems was assessed using a 6-item scale developed in [17].
This was also a 5-point Likert scale



3) Perfect Automation Schema: Perfect Automation
Schema (PAS) was measured using the 7-item scale devel-
oped by [13]. Of these, 4 items measure high expectations
from the autonomy and the other 3 items measure All-or-
none thinking. This was a 7-point Likert scale.

4) Moment-to-Moment Trust: During the task, the partic-
ipants were asked to rate their moment-to-moment trust on
the drone by adjusting a slider on a 100-point scale.

5) Post-experiment trust: After the experiment, we used
two scales [16], [18] for assessing trust. The first one was
a 9-item questionnaire with sliders while we used 6-items
from the second scale all of which were 7-point Likert type
questions.

6) Workload: Workload was measured using the NASA
Task Load Index [19]. We only used 5 of the 6 items as
there was no physical demand from the participants in our
experiment. All the items had the participants rate their
feelings on a slider with values ranging from Very low to
Very high.

D. Experimental procedure

Prior to the experiment, participants provided informed
consent and completed the pre-experiment surveys. They
were oriented to the steps of the experiment and walked
through each of the screens they would see during the
experiment. The two-fold objective of minimizing time and
maximizing health was emphasized. They were informed
about the performance-based bonus pay. They were told
that the drone was imperfect, but they were not informed
of the exact reliability level. They were also told that the
robotic agent’s recommendations would help them achieve
the two-fold objective. Participants then proceeded to the
experimental trials, wherein they had to search through
100 houses sequentially. After searching each house, the
participants were asked to report their level of trust on the
autonomous agent’s recommendations. The participants took
on average 51.5 minutes to complete the task. At the end of
the experiment, participants completed the post-experiment
surveys.

V. RESULTS & DISCUSSION

A. Using Immediate Actual Reward as a performance metric

Since the participants are explicitly told to consider both
the soldier’s health and the time to complete the search as
their objectives, we expect their trust to be correlated with
the immediate reward that they receive upon choosing an
action. We expect that a participant’s trust would be likely
to increase if following the recommendation by the drone
gets them a higher reward than doing the opposite and vice
versa. Fig. 3 shows a representative example. In the figure,
a green triangle represents the site at which following the
recommendation would result in a better immediate reward
gain (pi = 1) and the red triangles represent the opposite.
It is quite clear that a red triangle is often followed by a
decrease in trust and a green triangle is followed by an
increase in trust. Thus, our reward-based performance metric
is able to capture moment-to-moment trust changes of the

Fig. 3. Trust feedback with overlay of red and green triangles representing
the rewards.

participant. Using this metric in our trust update model,
we get a prediction root mean squared error of 0.1266
(SD = 0.078).

B. Clustering of Trust Dynamics

Fig. 4. Clustering of participants according to their trust dynamics.

We employ k-means clustering to group participants with
similar trust dynamics. We use the root mean squared error
(ERMS) between the predicted trust and the trust feedback
and the average logarithm of trust as the clustering features.
For computing ERMS, we consider the feedback at the first
20 sites as a training set to fit the personalized parameters
(α0,β0,ws,w f ). Thereafter, we use the feedback after every 5
sites to update the parameters. Fig. 4 shows the results. We
choose k = 3 as the optimum number of clusters because
it is a turning point of both the within-cluster variance
and the silhouette score. We call the cluster with small
ERMS and generally higher values of trust Bayesian Decision
Makers. The second cluster, called Disbelievers, consists of
participants whose ERMS values are small but whose trust is
generally low. The third significant group is the Oscillators,
whose trust changes rapidly, making it harder to predict.

C. Personal Characteristics and Type of Trust Dynamics

We performed one-way ANOVA between the data of the
clustered participants. Results showed significant difference
between the three types of trust dynamics in Extraversion
(F(2,42) = 4.991, p = 0.011), Agreeableness (F(2,42) =



3.276, p= 0.048), and the High Expectations facet of the Per-
fect Automation Schema (F(2,42) = 5.752, p = 0.006). Fur-
ther, propensity to trust automation (F(2,42) = 3.002, p =
0.06) and intellect/imagination (F(2,42) = 2.687, p = 0.08)
had marginally significant differences.

Post-hoc analysis with Bonferroni adjustment shows that
the disbelievers are significantly less extroverted than the os-
cillators (p = 0.009). Disbelievers were only marginally less
extroverted than Bayesian Decision Makers (p= 0.061). Dis-
believers were marginally less agreeable than the Bayesian
Decision Makers (p = 0.068) and Oscillators (p = 0.06).
Disbelievers had significantly lower expectations from au-
tomation compared to both Bayesian Decision Makers (p =
0.005) and Oscillators (p = 0.023).

One way ANOVA on the post-experiment measures show
significant difference between the three clusters in their post-
experiment trust reports (Trust questionnaire by Muir and
Moray F(2,42) = 22.167, p < 0.001, Trust questionnaire by
Lyons and Guznov F(2,42) = 15.183, p < 0.001) and their
frustration levels (F(2,42) = 4.136, p = 0.023)).

Post-hoc analysis with Bonferroni adjustment shows that
there are significant differences between each of the three
groups’ trust reports according to the trust questionnaire
by Muir and Moray (p < 0.001 between Bayesian Decision
Makers and Disbelievers, p = 0.006 between Bayesian De-
cision Makers and Oscillators, and p = 0.009 between Os-
cillators and Disbelievers with the highest trust for Bayesian
Decision Makers and lowest for Disbelievers). Trust reported
with the questionnaire by Lyons and Guznov only showed
significant difference between Disbelievers and Bayesian
Decision Makers (p < 0.001), and between Oscillators and
Bayesian Decision Makers (p = 0.002). Oscillators were
significantly more frustrated than Bayesian Decision Makers
(p = 0.025).

VI. CONCLUSIONS

In this study, we formulated the human-robot sequen-
tial decision-making problem as an MDP and proposed
an innovative reward-based performance metric for trust-
aware decision-making. Through a human-subject exper-
iment, we found three distinct types of trust dynamics,
namely, Bayesian Decision Makers, Oscillators, and Disbe-
lievers. Our model achieved different accuracies on different
types on trust dynamics, which points to a requirement to
use different models for people in different categories.

Analyses suggest that those individuals classified as
Bayesian Decision makers evidenced high expectations of
automation. When combined with other state measures such
as trust and frustration, one might be able to identify a
profile of the Bayesian Decision makers as the combination
of individual differences and state measures could be used to
parse the sample into the three categories of trust dynamics.
Knowing that an individual might fall into one of the
categories could influence whether or not a machine partner
that is equipped with a dynamic trust model is a feasible
solution for that individual.

In future studies, besides the reverse-psychology model,
different human trust-behavior models should be considered.
In addition, techniques such as inverse reinforcement learn-
ing can be employed to learn the preference of the human
teammate to improve the team performance.
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