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Why is Trust Important in HRI?
• Trust influences reliance on autonomous systems [2]

• Several self-report questionnaires have been 
designed to measure trust post interaction [3]
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• Trust is dynamic and varies during interaction [4]

• Thus, mathematical models of trust were designed, 
capable of estimating moment-to-moment trust [5]
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Why is Trust Important in HRI?
• Trust influences reliance on autonomous systems [2]

• Several self-report questionnaires have been 
designed to measure trust post interaction [3]

• Trust is dynamic and varies during interaction [4]

• Thus, mathematical models of trust were designed, 
capable of estimating moment-to-moment trust [5]

• Open question – How do we incorporate these trust 
models into the decision-making system of 
autonomous agents?
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Trust-Aware Markov Decision Process (MDP)
• We mainly focus on scenarios where the robot acts as an action recommender to the human

Item Description

States Trust, Contextual Information

Actions Actions recommended by the robot and implemented by the human

Transition Function Dynamic Trust Model, Contextual Information Updates

Reward Function Rewards obtained for choosing actions in specific states

Human Behavior Model Probability of the human choosing an action given the recommendation

Table 1 - Components of the Trust-Aware MDP

• However, this framework can be readily extended to other HRI scenarios
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Human-Robot Team Task
• Intelligence, Surveillance, and Reconnaissance 

(ISR) Mission scenario

• A human-robot team performs a sequential search 
for potential threats in an abandoned town

• At each search site, there are two actions 
• USE the armored robot – costs time, safer

• NOT USE the armored robot – may cost health, quicker

Their objective is to minimize 
the loss of time and health
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Trust Aware MDP – States and Transition Function
• Trust is modeled as a Beta Distribution with parameters     and    

• The dynamic trust model [3] is the transition function

• We propose a reward-based performance metric for the 
sequential decision-making paradigm
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Trust Aware MDP – Human Behavior Model
• We use the reverse psychology model of human behavior [6]

• Mathematically,
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Trust Aware MDP - Reward Function

• Guo et al. [6] observed that the robot tends to fall into the reverse psychology loop in the 
absence of a trust-gaining reward term

• So, we added a trust-gaining reward term to the robot’s reward function

• The performance metric only uses the task reward to judge the robot’s recommendation 
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ISR Mission Testbed

Team moves to 
a search site

Drone scans, 
reports info

Agent 
recommends 

action

Human selects 
action

Team observes 
outcome

Human reports 
feedback

Team member Task

Human Select the action to implement

Intelligent Agent Recommend actions to the human

RARV* Protect the human from threats

Drone Scan the site and report threat level
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Human-Subjects Experiment
• 46 students from the University of Michigan participated

• 21 Female, Age 22.8 ± 3.6 years

• Measures:
• Big 5 Personality Traits [7]

• Perfect Automation Schema [8]

• Propensity to Trust [9]

• Trust after each site

• Post-experiment Trust [10]

• Workload [11]

• Participants searched through 100 sites sequentially
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Results – Reward based performance metric

- 𝑝𝑖 = 1

- 𝑝𝑖 = 0
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Results – Clustering Analysis
• K-means clustering analysis

• Features:
• RMSE between feedback and predicted trust

• Average log trust

• Elbow heuristic and silhouette scores indicate 
3 significant clusters

Oscillators

Disbelievers Bayesian Decision Makers
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Results – Associations with Personal Characteristics

• Disbelievers less extroverted than 
Oscillators

• Disbelievers have lower 
expectations from autonomy
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Phase 1 – Key Takeaways and Limitations

KEY TAKEAWAYS

• Demonstrated the efficacy of the trust-
aware MDP framework

• Found 3 types of trust dynamics 
exhibited by people

• Showed the effectiveness of the reward-
based performance metric to capture the 
internal trust dynamics of humans

LIMITATIONS

• Assumed that the human and robot share 
a common reward function

• Used the Reverse Psychology Model 
• Only applicable to binary action scenarios

• Does not consider the preferences of the human

• Requires a trust-gaining reward term

THIS WORK WAS PUBLISHED IN RAL AND PRESENTED AT IROS AND ICRA 18/52
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Bounded Rationality Disuse Model of Human Behavior

12. SU (2008)

• We introduce the Bounded Rationality Disuse Model of Human Behavior

• Mathematically,

20/52
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Benefits Over Reverse Psychology Model

BOUNDED RATIONALITY DISUSE

• Uses the underlying preferences of the 
human

• Extensible to multi-action scenarios

• Robot only prefers high-trust states, thus 
removing the requirement for a trust-gain 
reward term

REVERSE PSYCHOLOGY

• Does not use the underlying preferences 
of the human

• Restricted to binary action scenarios

• Robot prefers both high- and low-trust 
states, requiring the trust-gain reward 
term
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Reward Function

• We remove the trust-gain reward term from Phase 1

• We separate the reward functions for the two agents – Human       and Robot

• We assume that the reward is a convex combination of health-loss cost and time-loss cost

Phase 1

Phase 2
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Bayesian Inverse Reinforcement Learning
• Core Idea: 

• Maintain a belief distribution on the reward weights of the human 

• Update it after observing the interaction using Bayes’ rule on the Behavior Model

• The algorithm needs an initial distribution             to get started

• We present results from two human-subjects’ studies that differ in this initial distribution 
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Human-Subject Studies - Conditions
• We design three interaction strategies for the robot
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Non-Learner Non-Adaptive Learner Adaptive Learner

• Assumes that the human and the 
robot share the same reward 
weights

• No reward learning is performed

• Similar to Phase 1

• Learns personalized reward weights 
for each human it interacts with

• Only uses these personalized 
weights for
• Behavior Prediction
• Performance Estimation

• Solves trust-aware MDP for fixed 
reward weights (similar to non-
learner)

• Learns personalized reward weights 
for each human it interacts with

• Uses these personalized weights for
• Behavior Prediction
• Performance Estimation
• Solving trust-aware MDP

• In essence, adopts these learned 
reward weights as its own



Human-Subjects Experiments

STUDY 1 – INFORMED PRIOR

• The robot starts its learning algorithm from 
an informed prior on the reward weights

• 30 participants

STUDY 2 – UNIFORM PRIOR

• The robot starts its learning algorithm from 
a uniform prior on the reward weights

• 24 participants

NOTE
The non-adaptive learner and the non-learner strategies use the mean of 
the corresponding prior as the weights for the robot’s reward function
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Human-Subjects Experiments – Details
• Within-subjects design

• Each participant completed 3 missions

• Each mission used 1 of the 3 interaction strategies

• Counterbalanced ordering

• Each mission contained 40 sequential 
searches

• Team started with 100 health and 100 time 
points
• Time cost – 5 points

• Health cost – 5 points
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Results – Subjective Trust

STUDY 1 – INFORMED PRIOR STUDY 2 – UNIFORM PRIOR

10. MUIR (1996)

• No significant difference between the 
three strategies

• Adaptive strategy dominates trust
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Results – Behavioral Trust

STUDY 1 – INFORMED PRIOR STUDY 2 – UNIFORM PRIOR

• No significant difference between the 
three strategies

• Adaptive strategy is most agreeable
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Results – Team Performance

STUDY 1 – INFORMED PRIOR STUDY 2 – UNIFORM PRIOR

• No significant difference between the 
three strategies

• No significant difference between the 
three strategies
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Results – Workload

STUDY 1 – INFORMED PRIOR STUDY 2 – UNIFORM PRIOR

11. HART (1988)

• No significant difference between the three 
strategies

• Adaptive strategy associated with lowest 
frustration and highest perceived performance
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Phase 2 – Key Takeaways and Limitations

KEY TAKEAWAYS

• Proposed the Bounded Rationality 
Disuse Model of human behavior

• Proposed a framework for personalized 
reward learning using Bayesian IRL

• Personalized reward alignment works 
better when starting with a uniform prior 
on reward weights

LIMITATIONS

• No context dependence in the reward 
function

• Limited exploration of the health and 
time contexts

• Limited variance in the threat levels 
presented to the participants

THIS WORK WAS PUBLISHED AND PRESENTED AT THE HRI CONFERENCE AND AAAI FALL SYMPOSIUM 31/52



Agenda
• Introduction

• Phase 1 – Trust-Driven Markov Decision Process

• Phase 2 – Effects of real-time personalization of reward weights

• Phase 3 – Effects of fine-grained reward learning and state space exploration

• Future Research Directions

32/52



Reward Function

• We add the current health and current time in the state space of the trust-aware MDP 

• We explicitly vary the reward weights based on the current health and time

• We do not separate reward functions for the two agents

33/52
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The Critical Chance of Threat Presence -

• We see that at a certain chance of threat presence, the 
two actions result in the same expected reward

• At a chance below     , NOT USING the armored robot is 
better on average

• At a chance above     , USING the armored robot is 
better on average
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Learning State Dependence of Rewards
• For a set of states                         get responses from 

participants about their choice of action for a range of 
threat levels

• Train logistic regressions for each 
• The threat level      is the threat level at which the classifier gives 

an equal probability for both actions for the state 

• Data collected via Amazon Mechanical Turk
• 396 queries (6 health * 6 time * 11 threat levels)

• 124 workers

• 4092 responses
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State Dependent Reward Function
• Raw data of learned reward weights 

is then smoothed by fitting a logistic 
regression model

• Forward selection using the Akaike 
Information Criterion (AIC) for 
selecting features for the final 
model

36/52
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Human-Subject Studies – Interaction Strategies
• We design two interaction strategies for the robot

37/52

Constant

• Uses constant reward weights associated 
with the costs of losing health and losing 
time

• Similar to the non-learner strategy from 
Phase 2, with the informed prior

• Chosen as a baseline since the non-learner 
performed as well as the adaptive-learner in 
the informed prior case in phase 2

State Dependent

• Uses the learned state-dependent reward 
function for the reward weights 

• Changes risk appetite depending on the 
current context of interaction

• Goal is to check if people can identify the 
changing risk appetite and prefer it



Human-Subject Studies – Vulnerability to the Human
• We also consider two conditions of vulnerability for the human

38/52

Low Vulnerability

• The human starts with a pool of 100 health 
points and 100 time points

• Operationalized as a high level of armor and 
high available mission time

High Vulnerability

• The human starts with a pool of 40 health 
points and 40 time points

• Operationalized as a low level of armor and 
low available mission time

In both conditions, participants lost
• 10 points of time on using the RARV
• 10 points of health on encountering threat without the RARV



Active Threat Selection
• What we want to convey?

• The constant strategy may be too conservative
• The state dependent strategy changes risk appetite

• So, we need to be smart about how we set the threats and 
threat levels

• Threats set

• Randomly, with 50% chance
• Actively, with 50% chance

39/52
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Human-Subject Studies – Data Collection
• 2 x 2 mixed factorial design study

• Robot strategy – within-subjects variable

• Vulnerability – between-subjects variable

• 40 participants
• Each participant did 2 missions
• Each mission had 10 sequential searches

• Removed data from 7 participants who did 
not complete the mission
• 6 from high vulnerability condition

• Final dataset – 33 participants
• 19 participants – low vulnerability
• 14 participants – high vulnerability
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Participants lost
• 10 points of time on using the RARV
• 10 points of health on encountering threat without the RARV



Results – Subjective Trust
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Results – Reliance Intentions
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Results – Behavioral Trust
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Results – Team Performance

 

  

44/52



Phase 3 – Key Takeaways and Limitations

KEY TAKEAWAYS

• Proposed a framework for learning state-
dependent reward functions in an ISR 
mission context

• Conducted empirical studies to learn this 
reward function and to evaluate its 
effects on trust and team performance

• Fine-grained reward functions are better 
for trust and team performance, 
especially when the stakes are high

LIMITATIONS

• Studies only involved binary action 
choices

• Studies involved dual-objective scenarios 
in which there is an obvious bias towards 
one of the objectives

• We only considered dyadic human-robot 
interaction scenarios

A PART OF THIS WORK WAS PUBLISHED AND PRESENTED AT ICHMS 45/52
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More Personalized Trust Dynamics Models
• We found that some people exhibit the Oscillator 

type trust dynamics

• The Beta distribution trust dynamics model used in 
this work struggles to model these dynamics

• Possible future direction 
• Predict if a person is an oscillator based on their personal 

characteristics

• Use a specialized trust dynamics model suited for oscillators 
when interacting with this person
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Exploring Other HRI Domains
• Other types of interactions that would benefit from a trust-

driven approach
• Human-supervisor, robot-worker

• Human and robot doing separate tasks toward a common goal

• Human assigning tasks to a robot

• In the ISR mission context, most humans prefer saving the 
soldier’s health than saving mission time
• More research needs to be done to see if our results translate to 

situations where human preferences are more varied

• E.g. Time vs Quality of Work, Speed vs Eco-friendliness
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Incorporating Multiple Actions
• We focused on a binary action scenario – USE or NOT 

USE the RARV
• Easily define the intuitive reward-based performance metric

• In case multiple actions are available, humans may
• Have a non-binary performance metric

• Exhibit satisficing behavior [13]

• Something else?

• Studying the performance metric could be an interesting 
direction for future research

13. SIMON (1955) 49/52
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Multi-Human Multi-Robot Scenarios
• We focused on a dyadic human-robot interaction scenario

• Extending this to a multi-human multi-robot paradigm brings in an 
entirely new set of challenges

• Trust dynamics model
• Trust not only evolves through direct experience with a robot, but 

also propagates through indirect experiences through another human 
teammate [14, 15]

• Task Assignment
• How to assign sub-tasks to each dyadic human-robot team?
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Thank you!
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