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From Automation to Autonomy — From Tools to Teammates

O “5

Automation Autonomy
Rule based systems % Context-Aware J
Task execution Goal-Oriented |
Human-directed Collaborative )
Repetitive work Adaptive |
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Why is Trust Important in HRI?

* Trust influences reliance on autonomous systems [2]

 Several self-report questionnaires have been
designed to measure trust post interaction [3]
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* Trust is dynamic and varies during interaction [4]
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Why is Trust Important in HRI?

* Trust influences reliance on autonomous systems [2]

 Several self-report questionnaires have been
designed to measure trust post interaction [3]

* Trust is dynamic and varies during interaction [4]

* Thus, mathematical models of trust were designed,
capable of estimating moment-to-moment trust [5]

e Open question — How do we incorporate these trust
models into the decision-making system of
autonomous agents?
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Trust-Aware Markov Decision Process (MDP)

* We mainly focus on scenarios where the robot acts as an action recommender to the human

fem ________ Descripton

States Trust, Contextual Information

Actions Actions recommended by the robot and implemented by the human
Transition Function Dynamic Trust Model, Contextual Information Updates

Reward Function Rewards obtained for choosing actions in specific states

Human Behavior Model Probability of the human choosing an action given the recommendation

Table 1 - Components of the Trust-Aware MIDP

* However, this framework can be readily extended to other HRI scenarios
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Human-Robot Team Task

* Intelligence, Surveillance, and Reconnaissance
(ISR) Mission scenario

* A human-robot team performs a sequential search & :

—_—

for potential threats in an abandoned town =

* At each search site, there are two actions
* USE the armored robot — costs time, safer
* NOT USE the armored robot — may cost health, quicker

Their objective is to minimize
the loss of time and health
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Trust Aware MDP — States and Transition Function

* Trust is modeled as a Beta Distribution with parameters « and 3

t,,; ~ Beta(ozz-, 67,)

* The dynamic trust model [3] is the transition function
Qiy1 = o +0°p;,
Bit1 = Bi + Uf(l — Di)-

* We propose a reward-based performance metric for the
sequential decision-making paradigm

{1 if RM"(a™) > RIM1—a"),
Pi =

0 otherwise.




Trust Aware MDP — Human Behavior Model

* We use the reverse psychology model of human behavior [6]

P
Follow the
recommendation

-

f
Implement the
opposite action

* Mathematically, P(a" = a7)
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Trust Aware MIDP - Reward Function

Task Reward

AN
r A

Ri(a?, D;) = —wyh(al, D;) — wec(al) + A 1(A)
J

.

Trust Reward

* Guo et al. [6] observed that the robot tends to fall into the reverse psychology loop in the
absence of a trust-gaining reward term

* So, we added a trust-gaining reward term to the robot’s reward function

* The performance metric only uses the task reward to judge the robot’s recommendation

6. GUO (2021B) 12/52



Agent
recommends
action

Human selects
action
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Human-Subjects Experiment

* 46 students from the University of Michigan participated
* 21 Female, Age 22.8 + 3.6 years

* Measures:
* Big 5 Personality Traits [7]
Perfect Automation Schema [8]

Propensity to Trust [9]

Trust after each site

Post-experiment Trust [10]
Workload [11]

* Participants searched through 100 sites sequentially

7. DONELLAN (2006) 8. LYONS (2019) 9. MERRITT (2013) 10. MUIR (1996) 11. HART (1988)




Results — Reward based performance metric
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Results — Clustering Analysis

* K-means clustering analysis

0.40 O
* Features: 0.35 1 o
* RMSE between feedback and predicted trust 030 4 O o ©
* Average log trust S 0257 © O
W 0.20
0.15
0.10 O C):) O
* Elbow heuristic and silhouette scores indicate 005! @ ®
3 significant clusters B0 -is  —io
z|09(h)

16/52



Results — Associations with Personal Characteristics

e Disbelievers less extroverted than

TABLE |
MEAN AND STANDARD DEVIATION (SD) OF PERSONAL

O ” CHARACTERISTICS BETWEEN THE THREE DIFFERENT TRUST DYNAMICS
Scillators (BDM = BAYESIAN DECISION MAKER)

e Disbelievers have lower
EXPECtatiO ns from aUtOI‘lomy Conscientiousness (/20)

Personal Characteristic BDM Disbeliever | Oscillator
Extraversion (/20) * 9.5 (3.3) 5.8 (2.8) 11.3 (2.9)
Agreeableness (/20) 7 13.5 (2.5) 10.4 (5.0) 14.1 (1.8)
13.1 (2.7) 12.4 (3.0) 12.1 (4.5)

Neuroticism (/20) 7.9 (2.7) 6.8 (3.6) 10.2 (4.7)
Intellect/Imagination (/20) 11.7 (2.0) 9.8 (1.8) 12.2 (1.8)
High Expectations (/28) ** 12.7 (3.9) 6.4 (2.8) 12.4 (4.2)
All or None Thinking (/21) 6.6 (2.9) 6.4 (3.4) 7.1 (3.1)
Trust Propensity (/30) 20.2 (4.4) 17.2 (4.1) 22.8 (3.2)

kx —p < 001, *—p<0.05 7T p<0.1
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Phase 1 — Key Takeaways and Limitations

- N R
KEY TAKEAWAYS LIMITATIONS
- YN Y
 Demonstrated the efficacy of the trust- * Assumed that the human and robot share
aware MDP framework a common reward function
* Found 3 types of trust dynamics * Used the Reverse Psychology Model
exhibited by people * Only applicable to binary action scenarios

* Does not consider the preferences of the human

* Requires a trust-gaining reward term
* Showed the effectiveness of the reward-

based performance metric to capture the
internal trust dynamics of humans

- AN J
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Bounded Rationality Disuse Model of Human Behavior

* We introduce the Bounded Rationality Disuse Model of Human Behavior
Follow the
recommendation

Choose according
to bounded

rationality [12]

* Mathematically,

P(a = ala’ = a,t;,w") = t; + (1 — t;)qa(w™),

Go(wh) = exp(kE[R} (a)])
a h / .
Pal =1 —ala’ = a,t;,w") = (1 — ;) (1 — qa(w™)). Darefo} EXP(RE[R} (a')])

i —

12. SU (2008) 20/52




Benefits Over Reverse Psychology Model

-
A\

~

BOUNDED RATIONALITY DISUSE )

* Uses the underlying preferences of the
human

* Extensible to multi-action scenarios

* Robot only prefers high-trust states, thus
removing the requirement for a trust-gain
reward term

-
A\

REVERSE PSYCHOLOGY

* Does not use the underlying preferences
of the human

 Restricted to binary action scenarios

* Robot prefers both high- and low-trust
states, requiring the trust-gain reward
term




Reward Function

/ Task Reward \
AN
4 A
Phase 1 Ri(al', D;) = —wph(al, D;) — wee(al) + - 1(A)
H_J
k Trust Reward /
C Phase 2 R°(a”, D;) = —w°h(a?, D;) — (1 — w®)c(al) where, o € {h,r} )

* We remove the trust-gain reward term from Phase 1
* We separate the reward functions for the two agents — Human (k) and Robot (7)

* We assume that the reward is a convex combination of health-loss cost and time-loss cost

22/52



Bayesian Inverse Reinforcement Learning

* Core Idea:
* Maintain a belief distribution on the reward weights of the human b; (w")
» Update it after observing the interaction using Bayes’ rule on the Behavior Model

P(a’? — aﬂa’gvti?w)b’i(w): if a? — a;;»

P(a? =1 —a’|al, t;,w)b;(w), otherwise.

bi_|_1 (’LU) 0.6 {

* The algorithm needs an initial distribution by(w) to get started

* We present results from two human-subjects’ studies that differ in this initial distribution

23/52



Human-Subject Studies - Conditions

* We design three interaction strategies for the robot

N ) )
Non-Learner Non-Adaptive Learner Adaptive Learner
N N _ _
Assumes that the human and the * Learns personalized reward weights Learns personalized reward weights
robot share the same reward for each human it interacts with for each human it interacts with
weights
* Only uses these personalized Uses these personalized weights for
No reward learning is performed weights for * Behavior Prediction
* Behavior Prediction * Performance Estimation
Similar to Phase 1 * Performance Estimation * Solving trust-aware MDP
* Solves trust-aware MDP for fixed In essence, adopts these learned
reward weights (similar to non- reward weights as its own
learner)
AN J J




Human-Subjects Experiments

STUDY 1 - INFORMED PRIOR STUDY 2 — UNIFORM PRIOR

* The robot starts its learning algorithm from ¢ The robot starts its learning algorithm from

an informed prior on the reward weights a uniform prior on the reward weights
* 30 participants * 24 participants
a )
NOTE

The non-adaptive learner and the non-learner strategies use the mean of
the corresponding prior as the weights for the robot’s reward function

_

J
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Human-Subjects Experiments — Details

* Within-subjects design
* Each participant completed 3 missions
* Each mission used 1 of the 3 interaction strategies

e Counterbalanced ordering

* Each mission contained 40 sequential
searches

* Team started with 100 health and 100 time
points
* Time cost — 5 points
* Health cost — 5 points

26/52



Results — Subjective Trust

STUDY 1 - INFORMED PRIOR

Muir's trust survey

100
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Non-Learner Non-adaptive-learner Adaptive-learner

* No significant difference between the
three strategies

10. MUIR (1996)

STUDY 2 — UNIFORM PRIOR

Muir's trust surve
100 y

* %

80

* %

Trust

E =

Non-Learner Non-adaptive-learner

Adaptive-learner

* Adaptive strategy dominates trust
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Results — Behavioral Trust

STUDY 1 - INFORMED PRIOR

Number of Agreements

50

40
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Non-learner Non-adaptive-learner Adaptive-learner

* No significant difference between the
three strategies

STUDY 2 — UNIFORM PRIOR
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* Adaptive strategy is most agreeable



Results — Team Performance

STUDY 1 - INFORMED PRIOR STUDY 2 — UNIFORM PRIOR

Team performance
100 p 100 Team performance

80 80
60 60
40

40

20 20

ik
=
i

Non-learner Non-adaptive-learner Adaptive-learner Non-learner Non-adaptive-learner Adaptive-learner

* No significant difference between the * No significant difference between the
three strategies three strategies




Results — Workload

STUDY 1 - INFORMED PRIOR STUDY 2 — UNIFORM PRIOR

100 Workload 100 Workload
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40
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SOOI

z NN

0
on-Learner Non-adaptive-learner Adaptive-learner Non-Learner Non-adaptive-learner Adaptive-learner

Z# Mental Demand wzm  Temporal Demand w7 Performance AW Effort wa®  Frustration wza  Mental Demand wzm  Temporal Demand Wz Performance waw  Effort waw Frustration

* Adaptive strategy associated with lowest

* No significant difference between the three ) y )
frustration and highest perceived performance

strategies

11. HART (1988) 30/52



Phase 2 — Key Takeaways and Limitations

-

N KEY TAKEAWAYS

~
)

* Proposed the Bounded Rationality
Disuse Model of human behavior

* Proposed a framework for personalized
reward learning using Bayesian IRL

* Personalized reward alignment works
better when starting with a uniform prior
on reward weights

o

J

e R
LIMITATIONS
\- Y
* No context dependence in the reward
function
* Limited exploration of the health and
time contexts
* Limited variance in the threat levels
presented to the participants
& J
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Reward Function

C Phase 2 R°(a”, D;) = —w°h(al, D;) — (1 — w®)c(al) where, o € {h,r} )
( Health —l X
Phase 3 R(H;,C;,al, D) = —w(H;, C;)h(a?, D;) — (1 — w(H;, C;))c(al)

Time J
- J

* We add the current health and current time in the state space of the trust-aware MDP
* We explicitly vary the reward weights based on the current health and time

* We do not separate reward functions for the two agents

33/52



The Critical Chance of Threat Presence - d*

* We see that at a certain chance of threat presence, the

two actions result in the same expected reward & (H,C) = (1 —w(H, C))c
’ w(H,C)h
e At a chance below d*, NOT USING the armored robot is ﬂ
better on average
C
W, C) = S @0
* At a chance above d* USING the armored robot is T
Time Loss Cost Health Loss Cost

better on average

34/52



Learning State Dependence of Rewards

* For a set of states{ H;, C;; };cn get responses from

participants about their choice of action for a range of _
threat levels di € [0, 1007%] _

* Train logistic regressions for each 1 oath 60, Time: 100
ealin: , Hime:
® "

* The threat level d*is the threat level at which the classifier gives 1
an equal probability for both actions for the state H;, C;

S o5
e Data collected via Amazon Mechanical Turk < d*=37.2%
* 396 queries (6 health * 6 time * 11 threat levels)
* 124 workers 0 - o0 bee
* 4092 responses ’ ? Thigat Chgcr]lce %80 o
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1.0
100
. > 80 0.9
State Dependent Reward Function £ .
s |
* Raw data of learned reward weights — s 40 0.7
is then smoothed by fitting a logistic Reward T 2 06
regression model weights 10
10 20 40 860 &80 100 oo
Time remaining
* Forward selection using the Akaike Risk taking behavior

o
=

on
o

Health remaining
I
=]

]
=

Information Criterion (AIC) for 100 .
selecting features for the final 0.9
model j 0.8

Smoothed
Reward 0.7

.c 1 Weights
wH, C) = + exp(0.26H — 0.17C — 0.79) 0.8
0 0.5
0 25 50 75 100

Time remaining

Risk-averse behavior




Human-Subject Studies — Interaction Strategies

* We design two interaction strategies for the robot

g Constant h g State Dependent h
N VRN P Y
* Uses constant reward weights associated e Uses the learned state-dependent reward
with the costs of losing health and losing function for the reward weights
time

* Changes risk appetite depending on the

* Similar to the non-learner strategy from ) ]
current context of interaction

Phase 2, with the informed prior

* Chosen as a baseline since the non-learner e Goalis to check if people can identify the
performed as well as the adaptive-learner in changing risk appetite and prefer it
the informed prior case in phase 2




Human-Subject Studies — Vulnerability to the Human

* We also consider two conditions of vulnerability for the human
4 ) 4 N

Low Vulnerabilit High Vulnerabilit
N i VN 2 i Y
* The human starts with a pool of 100 health  The human starts with a pool of 40 health
points and 100 time points points and 40 time points
* Operationalized as a high level of armor and e QOperationalized as a low level of armor and
K high available mission time y S low available mission time p

» . )
In both conditions, participants lost

e 10 points of time on using the RARV
* 10 points of health on encountering threat without the RARV
- /
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Active Threat Selection

» What we want to convey? /" Random Threat Selection (50%) N
* The constant strategy may be too conservative D ~ Bernouﬂi(O.G)
* The state dependent strategy changes risk appetite
p ~0.9, itD=1,
* So, we need to be smart about how we set the threats and o R
1, :
threat levels
[Active Threat Selection (50%) b
* Threats set
* Randomly, with 50% chance 1( ) ) — ’LU(H C)h
* Actively, with 50% chance ’
g (1 —w)c
2 wh
&y < d < d*
_ D ~ Bernoulli(d) )
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Human-Subject Studies — Data Collection

* 2 x 2 mixed factorial design study
* Robot strategy — within-subjects variable

* Vulnerability — between-subjects variable

* 40 participants
e Each participant did 2 missions
e Each mission had 10 sequential searches

* Removed data from 7 participants who did

not complete the mission
* 6 from high vulnerability condition

* Final dataset — 33 participants Participants lost

e 19 participants — low vulnerability e 10 points of time on using the RARV
« 14 participants — high vulnerability e 10 points of health on encountering threat without the RARV

40/52




Results — Subjective Trust

100
100
80
60 -
"a —
E é RobotStrategy
I Constant
40 H ISl State dependent
20
0- Low High
Constant State dependent
RobotStrategy

Vulnerability

10. MUIR (1996)
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Results — Reliance Intentions

7_

7_
6 - 6
5 5

Reliancelntentions
N
|
Reliancelntentions
N
1

RobotStrategy

I Constant

[ State dependent
34 3 -
2 27

1 -
1- Low High
Constant State dependent Vulnerability

RobotStrategy
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Results — Behavioral Trust

1.0 1 *%* * %
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Results — Team Performance

100 —
80
80 70 -
= -
3 5 60
g 60 0
: 2
4_19 ﬁ 50 RobotStrategy
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_.(E "g 40 -
2 °
20 H
0- Low High
Constant State dependent Vulnerability
RobotStrategy
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Phase 3 — Key Takeaways and Limitations

-
A\

~

KEY TAKEAWAYS y

o

* Proposed a framework for learning state-
dependent reward functions in an ISR
mission context

e Conducted empirical studies to learn this
reward function and to evaluate its
effects on trust and team performance

* Fine-grained reward functions are better
for trust and team performance,
especially when the stakes are high

J

4 )

LIMITATIONS
\- /

* Studies only involved binary action
choices

* Studies involved dual-objective scenarios
in which there is an obvious bias towards
one of the objectives

* We only considered dyadic human-robot
interaction scenarios

- J
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More Personalized Trust Dynamics Models

* We found that some people exhibit the Oscillator ®
type trust dynamics ° .
) 0.30 4 OO O
50.25— ® ® Q
W 0.20 7 v
* The Beta distribution trust dynamics model used in o) ® o Oé)) >
this work struggles to model these dynamics o® *@
zIog.'.;v(t‘,-)
* Possible future direction .
* Predict if a person is an oscillator based on their personal a; = o + nyi_jpjfvs
characteristics j=1
* Use a specialized trust dynamics model suited for oscillators i
when interacting with this person Bi=PBo+ Yy ¥ 71 —pin’
j=1
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Exploring Other HRI Domains

e Other types of interactions that would benefit from a trust-
driven approach
* Human-supervisor, robot-worker

* Human and robot doing separate tasks toward a common goal
* Human assigning tasks to a robot

* In the ISR mission context, most humans prefer saving the
soldier’s health than saving mission time

* More research needs to be done to see if our results translate to
situations where human preferences are more varied

74 1 hr 49 min \
No tolls

* E.g. Time vs Quality of Work, Speed vs Eco-friendliness

1hr 49 min (118 km)

“ Save 26% petrol by driving 9 more min
Fuel-efficient routes usually have fewer hills

Jine type
48/52



Incorporating Multiple Actions

* We focused on a binary action scenario — USE or NOT
USE the RARV

* Easily define the intuitive reward-based performance metric Non-binary performance metric

p € (0,1)

* |n case multiple actions are available, humans may
* Have a non-binary performance metric .
e Exhibit satisficing behavior [13] Satisficing performance metric

 Something else? i
: 1, if R(a") > Ry

0, otherwise

p:

 Studying the performance metric could be an interesting
direction for future research

13. SIMON (1955) 49/52




Multi-Human Multi-Robot Scenarios

* We focused on a dyadic human-robot interaction scenario

* Extending this to a multi-human multi-robot paradigm brings in an
entirely new set of challenges

* Trust dynamics model

* Trust not only evolves through direct experience with a robot, but
also propagates through indirect experiences through another human
teammate [14, 15]

* Task Assignment
* How to assign sub-tasks to each dyadic human-robot team?

14. GUO (2023) 15. HIDALGO (2025)
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