

# Enabling Effective Human-Robot Collaboration via Trust-Driven Decision-Making

---

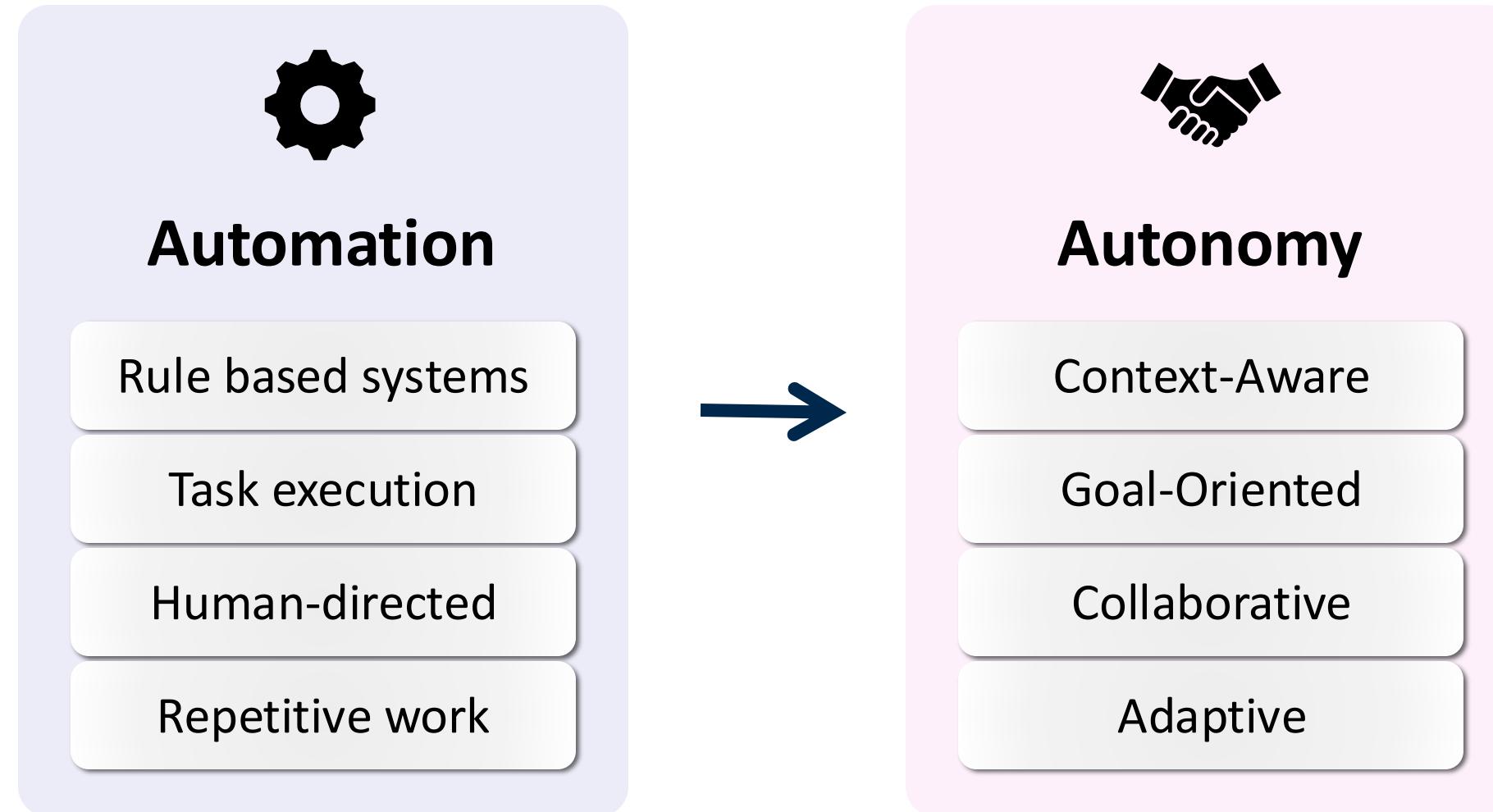
SHREYAS BHAT

# Agenda

---

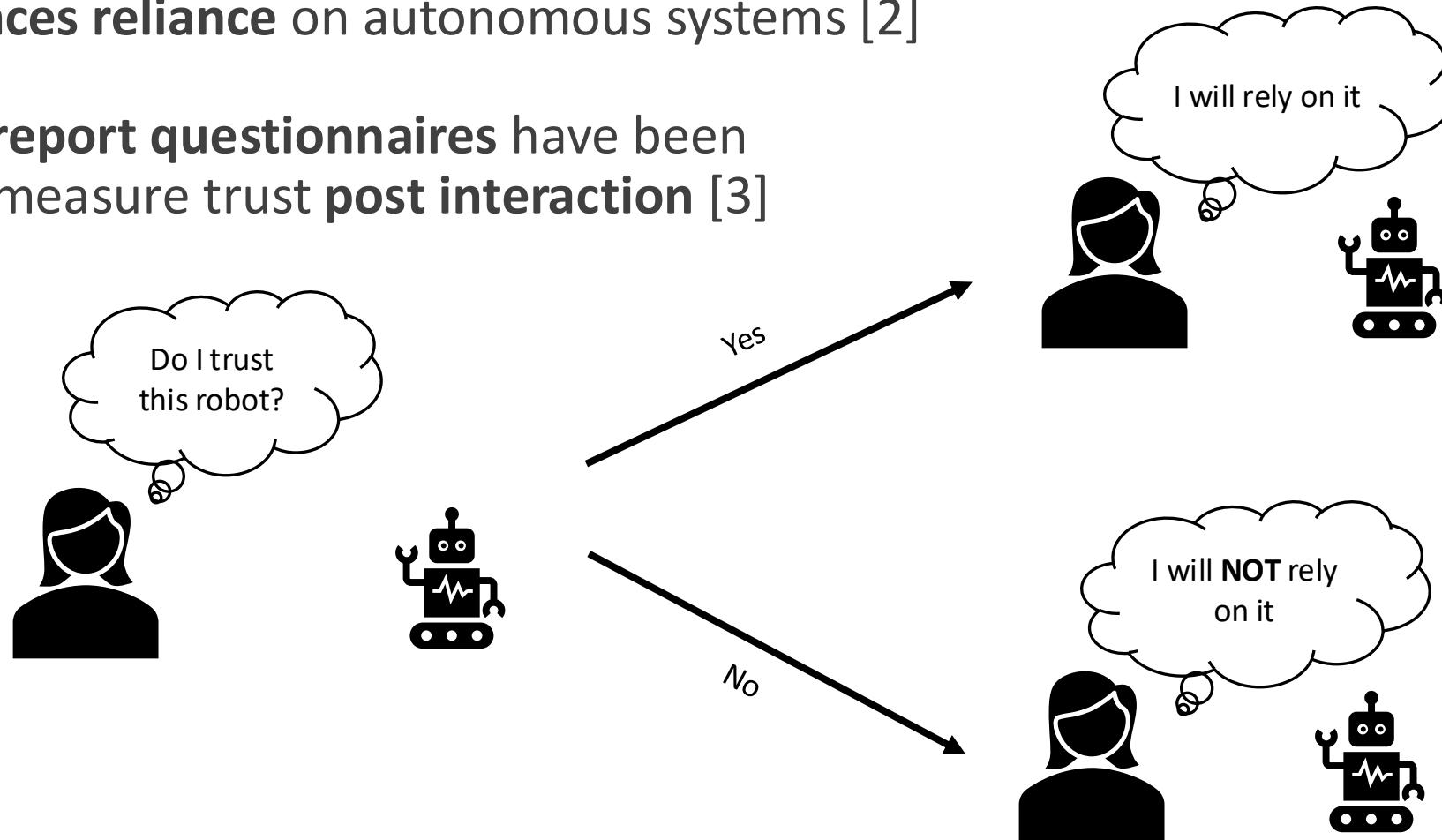
- Introduction
- **Phase 1** – Trust-Aware Markov Decision Process
- **Phase 2** – Effects of Real-time Personalization of Reward Weights
- **Phase 3** – Effects of Fine-grained Reward Learning and State Space Exploration
- Future Research Directions

# From Automation to Autonomy – From Tools to Teammates



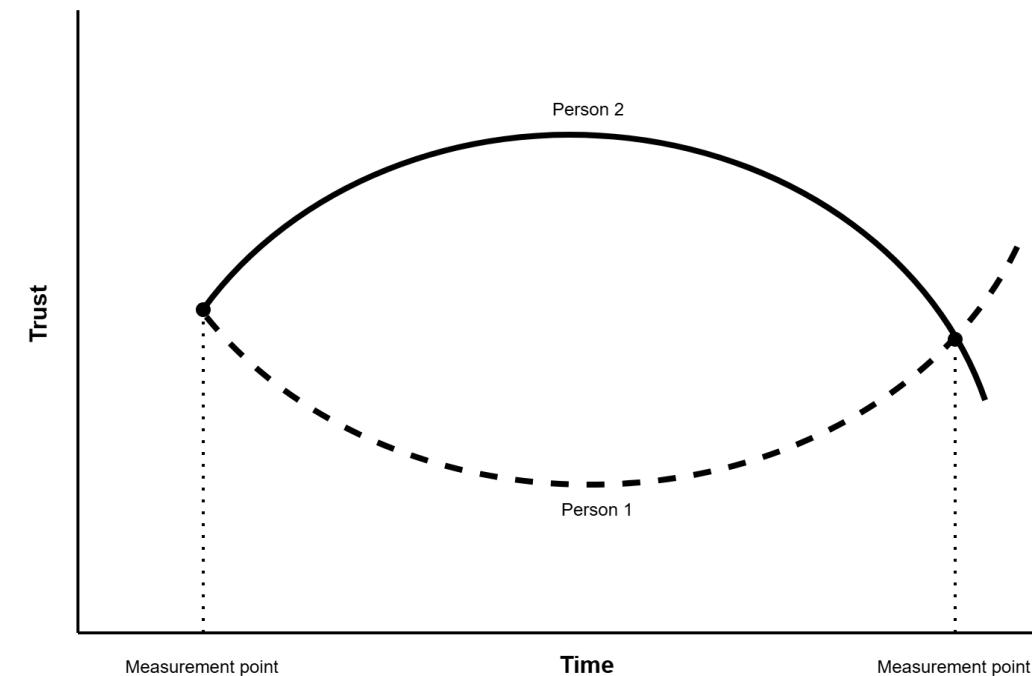
# Why is Trust Important in HRI?

- Trust influences reliance on autonomous systems [2]
- Several self-report questionnaires have been designed to measure trust post interaction [3]



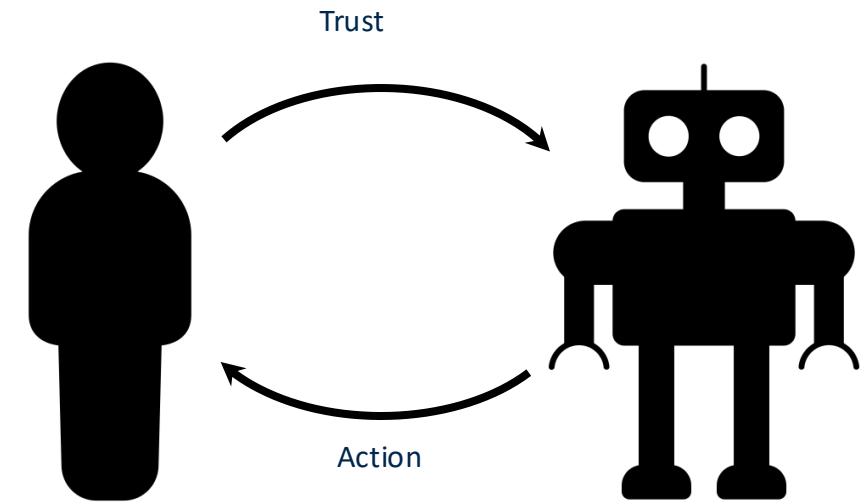
# Why is Trust Important in HRI?

- Trust influences reliance on autonomous systems [2]
- Several self-report questionnaires have been designed to measure trust post interaction [3]
- **Trust is dynamic** and varies during interaction [4]
- Thus, mathematical models of trust were designed, capable of **estimating moment-to-moment trust** [5]



# Why is Trust Important in HRI?

- Trust influences reliance on autonomous systems [2]
- Several self-report questionnaires have been designed to measure trust post interaction [3]
- Trust is dynamic and varies during interaction [4]
- Thus, mathematical models of trust were designed, capable of estimating moment-to-moment trust [5]
- **Open question** – How do we incorporate these trust models into the decision-making system of autonomous agents?



# Agenda

---

- Introduction
- **Phase 1 – Trust-Aware Markov Decision Process**
- Phase 2 – Effects of Real-time Personalization of Reward Weights
- Phase 3 – Effects of Fine-grained Reward Learning and State Space Exploration
- Future Research Directions

# Trust-Aware Markov Decision Process (MDP)

- We mainly focus on scenarios where the **robot acts as an action recommender** to the human

| Item                 | Description                                                                 |
|----------------------|-----------------------------------------------------------------------------|
| States               | <b>Trust</b> , Contextual Information                                       |
| Actions              | Actions recommended by the robot and implemented by the human               |
| Transition Function  | <b>Dynamic Trust Model</b> , Contextual Information Updates                 |
| Reward Function      | Rewards obtained for choosing actions in specific states                    |
| Human Behavior Model | Probability of the <b>human choosing an action</b> given the recommendation |

**Table 1 - Components of the Trust-Aware MDP**

- However, this framework can be **readily extended to other HRI scenarios**

# Human-Robot Team Task

- Intelligence, Surveillance, and Reconnaissance (ISR) Mission scenario
- A human-robot team performs a sequential search for potential threats in an abandoned town
- At each search site, there are two actions
  - **USE** the armored robot – **costs time, safer**
  - **NOT USE** the armored robot – **may cost health, quicker**



Their objective is to minimize the loss of time and health

# Trust Aware MDP – States and Transition Function

- Trust is modeled as a **Beta Distribution** with parameters  $\alpha$  and  $\beta$

$$t_i \sim \text{Beta}(\alpha_i, \beta_i)$$

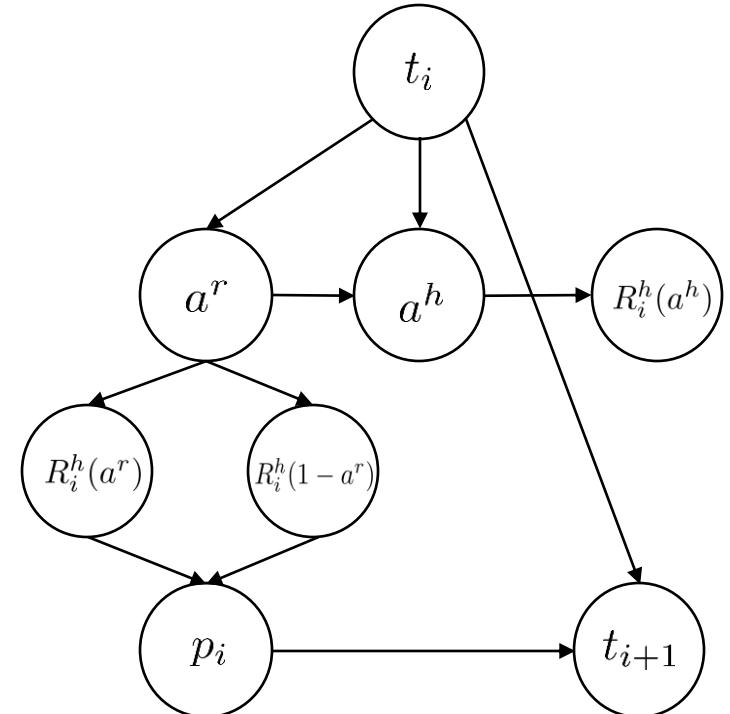
- The **dynamic trust model** [3] is the transition function

$$\alpha_{i+1} = \alpha_i + v^s p_i,$$

$$\beta_{i+1} = \beta_i + v^f (1 - p_i).$$

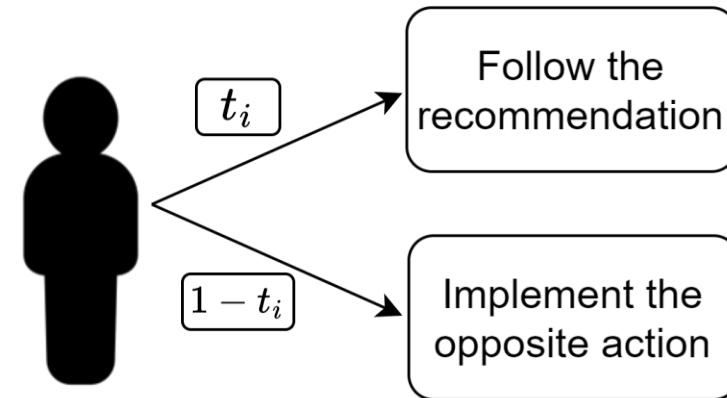
- We propose a **reward-based performance metric** for the sequential decision-making paradigm

$$p_i = \begin{cases} 1 & \text{if } R_i^h(a^r) \geq R_i^h(1 - a^r), \\ 0 & \text{otherwise.} \end{cases}$$



# Trust Aware MDP – Human Behavior Model

- We use the **reverse psychology model** of human behavior [6]



- Mathematically,

$$P(a_i^h = a_i^r) = t_i,$$

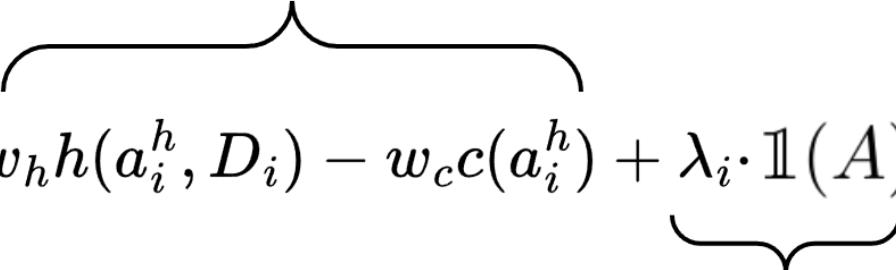
$$P(a_i^h = 1 - a_i^r) = 1 - t_i.$$

# Trust Aware MDP - Reward Function

$$R_i(a_i^h, D_i) = -w_h h(a_i^h, D_i) - w_c c(a_i^h) + \lambda_i \cdot \mathbb{1}(A)$$

Task Reward

Trust Reward



- Guo et al. [6] observed that the robot tends to fall into the **reverse psychology loop** in the **absence of a trust-gaining reward term**
- So, we added a **trust-gaining reward term** to the robot's reward function
- The **performance metric only uses the task reward** to judge the robot's recommendation

## ICD Mission Testbed

Health:70

Time Left:90

**According to the drone,  
the chance of threat presence in the building is: 13.1%**

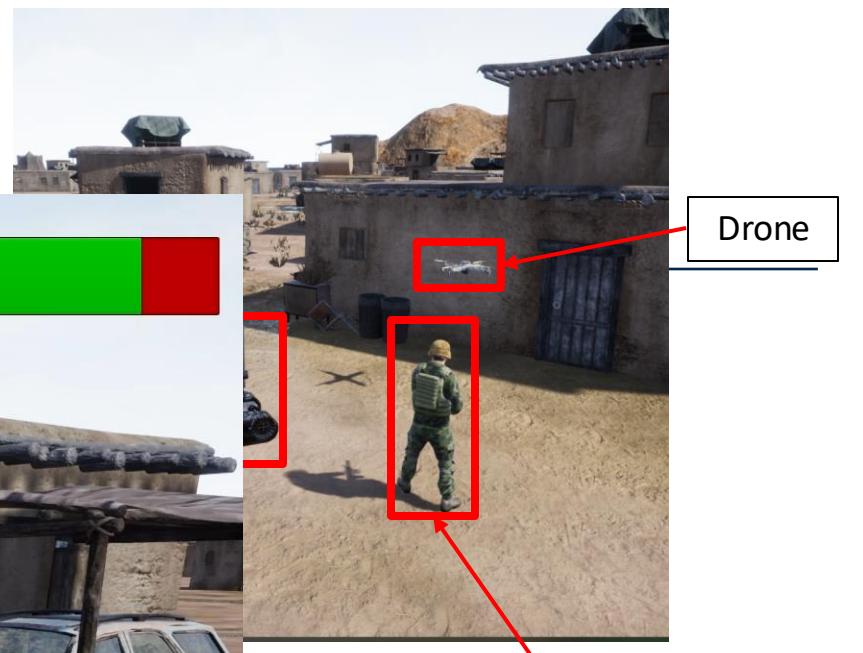
**Orion recommends to NOT USE the armored robot**

**After observing the recommendation,  
what action would you want to implement?**

## Use RARV

**NOT Use RARV**

House:2 / 10



## Human

Agent  
recommends  
action

Human selects  
action

# Human-Subjects Experiment

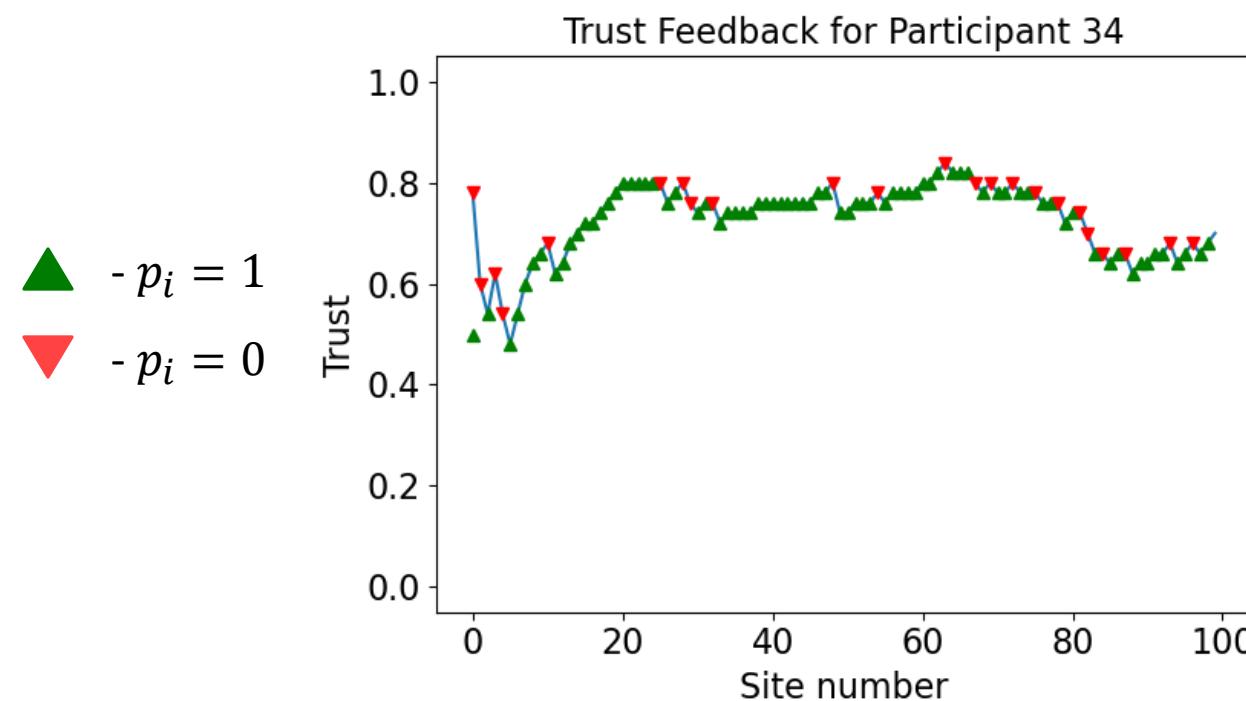
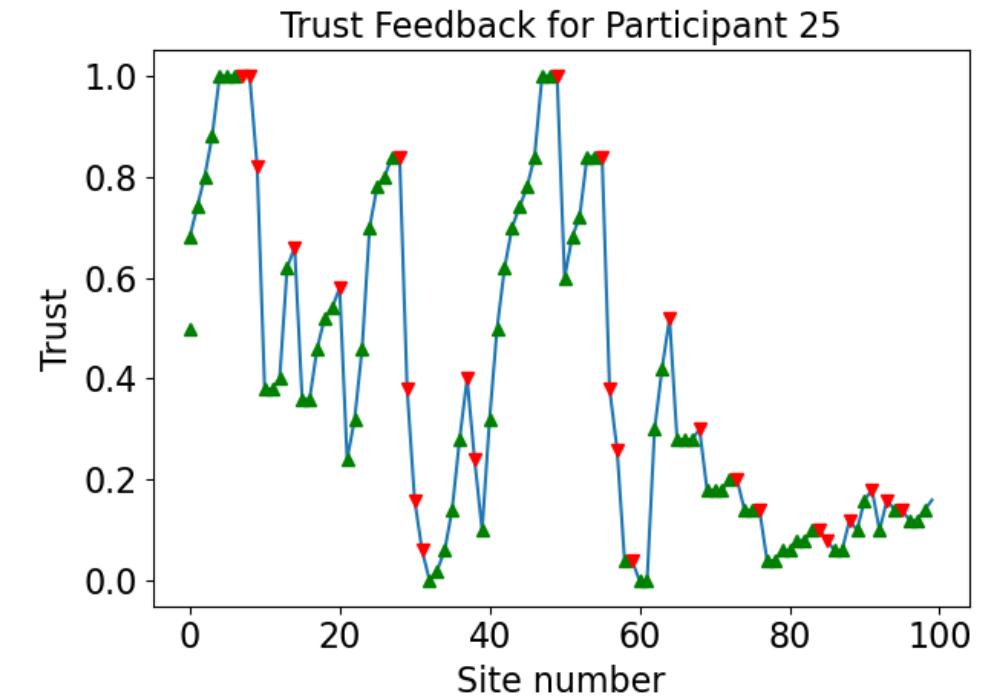
- 46 students from the University of Michigan participated
  - 21 Female, Age  $22.8 \pm 3.6$  years

- Measures:
  - Big 5 Personality Traits [7]
  - Perfect Automation Schema [8]
  - Propensity to Trust [9]
  - Trust after each site
  - Post-experiment Trust [10]
  - Workload [11]

- Participants searched through 100 sites sequentially

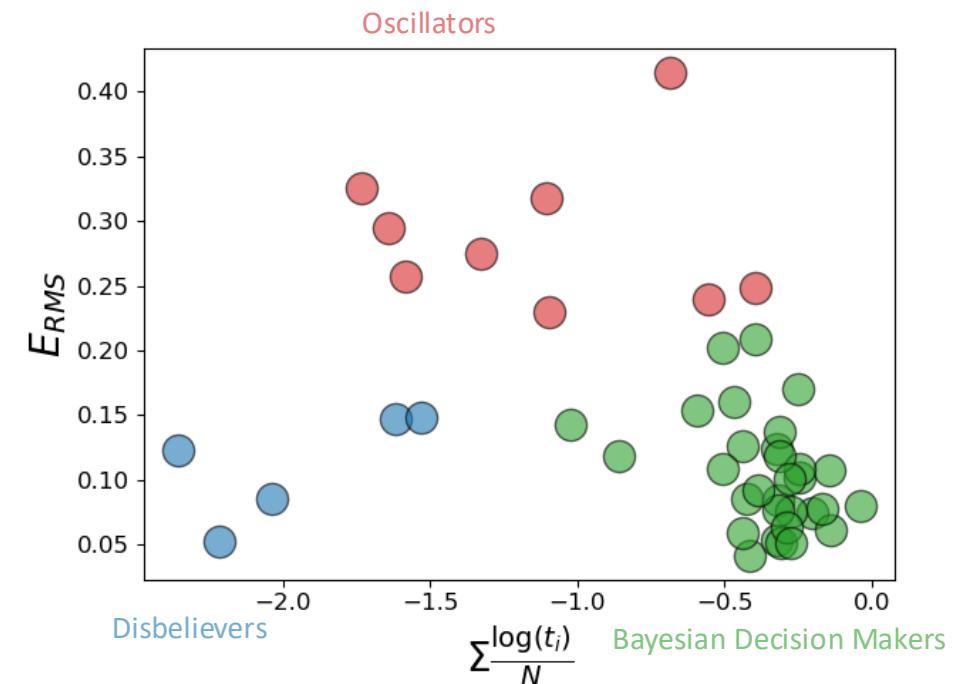


# Results – Reward based performance metric



# Results – Clustering Analysis

- K-means clustering analysis
- **Features:**
  - RMSE between feedback and predicted trust
  - Average log trust
- Elbow heuristic and silhouette scores indicate **3 significant clusters**



# Results – Associations with Personal Characteristics

- Disbelievers **less extroverted** than Oscillators
- Disbelievers have **lower expectations** from autonomy

TABLE I  
MEAN AND STANDARD DEVIATION (SD) OF PERSONAL  
CHARACTERISTICS BETWEEN THE THREE DIFFERENT TRUST DYNAMICS  
(BDM = BAYESIAN DECISION MAKER)

| Personal Characteristic       | BDM        | Disbeliever | Oscillator |
|-------------------------------|------------|-------------|------------|
| Extraversion (/20) *          | 9.5 (3.3)  | 5.8 (2.8)   | 11.3 (2.9) |
| Agreeableness (/20) *         | 13.5 (2.5) | 10.4 (5.0)  | 14.1 (1.8) |
| Conscientiousness (/20)       | 13.1 (2.7) | 12.4 (3.0)  | 12.1 (4.5) |
| Neuroticism (/20)             | 7.9 (2.7)  | 6.8 (3.6)   | 10.2 (4.7) |
| Intellect/Imagination (/20) † | 11.7 (2.0) | 9.8 (1.8)   | 12.2 (1.8) |
| High Expectations (/28) **    | 12.7 (3.9) | 6.4 (2.8)   | 12.4 (4.2) |
| All or None Thinking (/21)    | 6.6 (2.9)  | 6.4 (3.4)   | 7.1 (3.1)  |
| Trust Propensity (/30) †      | 20.2 (4.4) | 17.2 (4.1)  | 22.8 (3.2) |

\*\* –  $p < 0.01$ , \* –  $p < 0.05$ , † –  $p < 0.1$

# Phase 1 – Key Takeaways and Limitations

## KEY TAKEAWAYS

- Demonstrated the efficacy of the **trust-aware MDP framework**
- Found **3 types of trust dynamics** exhibited by people
- Showed the effectiveness of the **reward-based performance metric** to capture the **internal trust dynamics** of humans

## LIMITATIONS

- Assumed that the human and robot **share a common reward function**
- Used the Reverse Psychology Model
  - Only applicable to **binary action** scenarios
  - Does **not consider the preferences** of the human
  - Requires a **trust-gaining reward term**

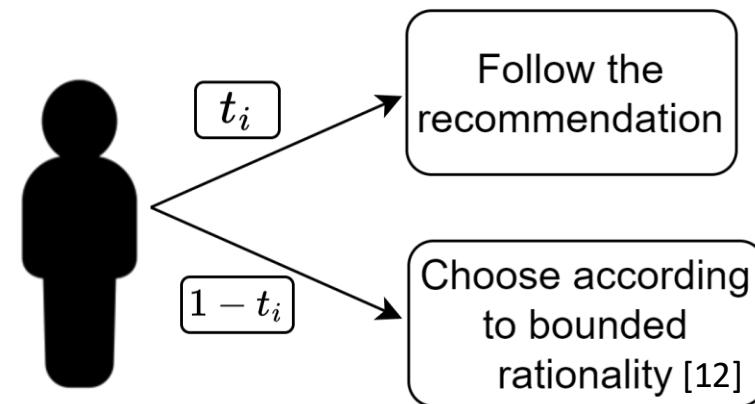
# Agenda

---

- Introduction
- Phase 1 – Trust-Driven Markov Decision Process
- **Phase 2 – Effects of real-time personalization of reward weights**
- Phase 3 – Effects of fine-grained reward learning and state space exploration
- Future Research Directions

# Bounded Rationality Disuse Model of Human Behavior

- We introduce the **Bounded Rationality Disuse Model** of Human Behavior



- Mathematically,

$$P(a_i^h = a | a_i^r = a, t_i, w^h) = t_i + (1 - t_i)q_a(w^h),$$

$$P(a_i^h = 1 - a | a_i^r = a, t_i, w^h) = (1 - t_i)(1 - q_a(w^h)).$$

$$q_a(w^h) = \frac{\exp(\kappa E[R_i^h(a)])}{\sum_{a' \in \{0,1\}} \exp(\kappa E[R_i^h(a')])}.$$

# Benefits Over Reverse Psychology Model

## BOUNDED RATIONALITY DISUSE

- Uses the **underlying preferences** of the human
- Extensible to **multi-action scenarios**
- Robot **only prefers high-trust states**, thus **removing** the requirement for a **trust-gain reward term**

## REVERSE PSYCHOLOGY

- Does **not use the underlying preferences** of the human
- Restricted to **binary action scenarios**
- Robot prefers both high- and **low-trust states**, **requiring the trust-gain reward term**

# Reward Function

**Phase 1**

$$R_i(a_i^h, D_i) = -w_h h(a_i^h, D_i) - w_c c(a_i^h) + \lambda_i \cdot \mathbb{1}(A)$$

Task Reward

Trust Reward

**Phase 2**

$$R^o(a_i^h, D_i) = -w^o h(a_i^h, D_i) - (1 - w^o) c(a_i^h) \quad \text{where, } o \in \{h, r\}$$

- We **remove the trust-gain reward term** from Phase 1
- We separate the reward functions for the two agents – Human ( $h$ ) and Robot ( $r$ )
- We assume that the reward is a **convex combination** of health-loss cost and time-loss cost

# Bayesian Inverse Reinforcement Learning

---

- **Core Idea:**
  - Maintain a **belief distribution on the reward weights** of the human  $b_i(w^h)$
  - **Update it** after observing the interaction **using Bayes' rule** on the Behavior Model

$$b_{i+1}(w) \propto \begin{cases} P(a_i^h = a_i^r | a_i^r, t_i, w) b_i(w), & \text{if } a_i^h = a_i^r, \\ P(a_i^h = 1 - a_i^r | a_i^r, t_i, w) b_i(w), & \text{otherwise.} \end{cases}$$

- The algorithm needs an **initial distribution**  $b_0(w)$  to get started
- We present results from **two human-subjects' studies** that differ in this **initial distribution**

# Human-Subject Studies - Conditions

- We design three interaction strategies for the robot

## Non-Learner

- Assumes that the human and the robot **share the same reward weights**
- **No reward learning** is performed
- **Similar to Phase 1**

## Non-Adaptive Learner

- **Learns personalized reward weights** for each human it interacts with
- Only uses these personalized weights for
  - Behavior Prediction
  - Performance Estimation
- **Solves trust-aware MDP for fixed reward weights** (similar to non-learner)

## Adaptive Learner

- Learns **personalized reward weights** for each human it interacts with
- Uses these personalized weights for
  - Behavior Prediction
  - Performance Estimation
  - Solving trust-aware MDP
- In essence, **adopts these learned reward weights** as its own

# Human-Subjects Experiments

---

## STUDY 1 – INFORMED PRIOR

- The robot starts its learning algorithm from an **informed prior** on the reward weights
- 30 participants

## STUDY 2 – UNIFORM PRIOR

- The robot starts its learning algorithm from a **uniform prior** on the reward weights
- 24 participants

### NOTE

The **non-adaptive learner** and the **non-learner** strategies use the **mean of the corresponding prior** as the weights for the robot's reward function

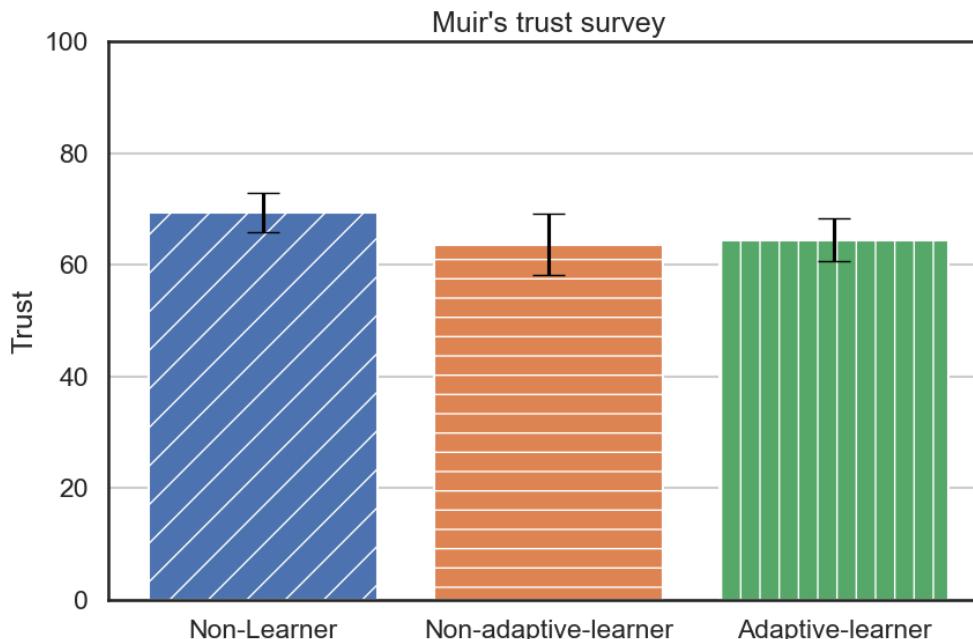
# Human-Subjects Experiments – Details

- Within-subjects design
  - Each participant completed **3 missions**
  - Each mission used 1 of the 3 interaction strategies
  - Counterbalanced ordering
- Each mission contained **40 sequential searches**
- Team started with **100 health** and **100 time points**
  - Time cost – **5 points**
  - Health cost – **5 points**



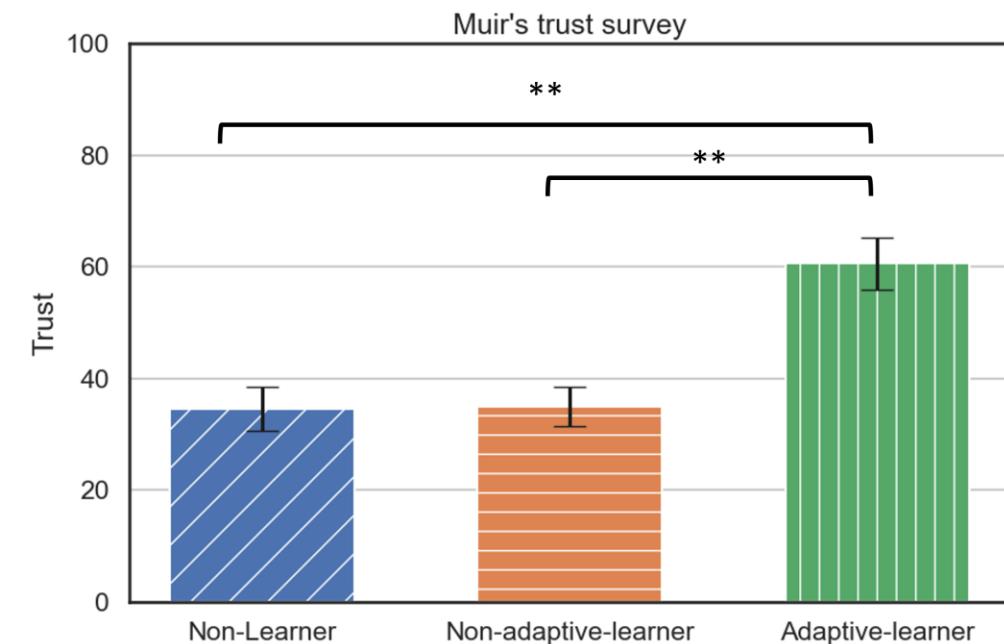
# Results – Subjective Trust

## STUDY 1 – INFORMED PRIOR



- No significant difference between the three strategies

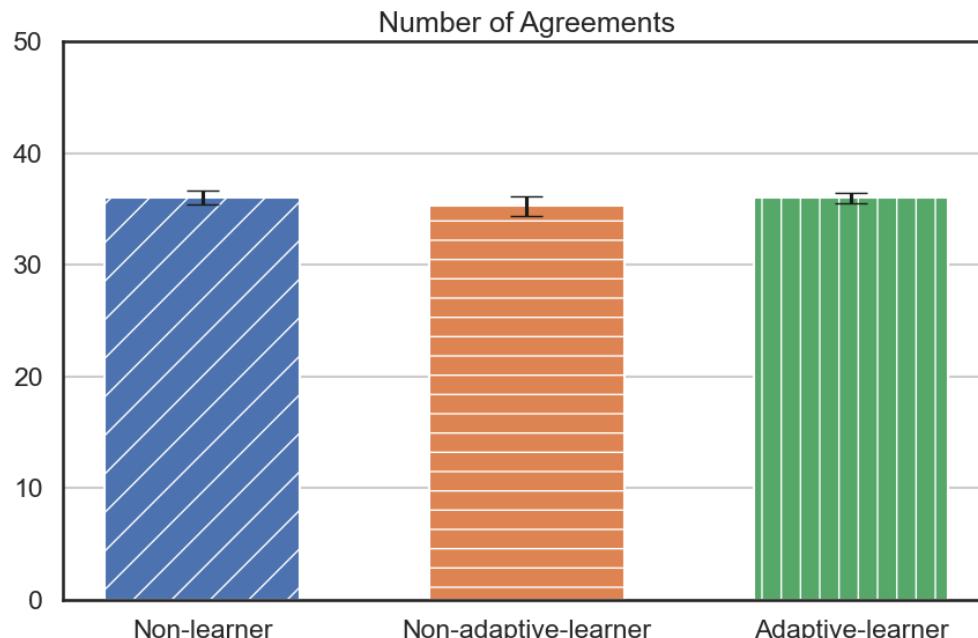
## STUDY 2 – UNIFORM PRIOR



- Adaptive strategy dominates trust

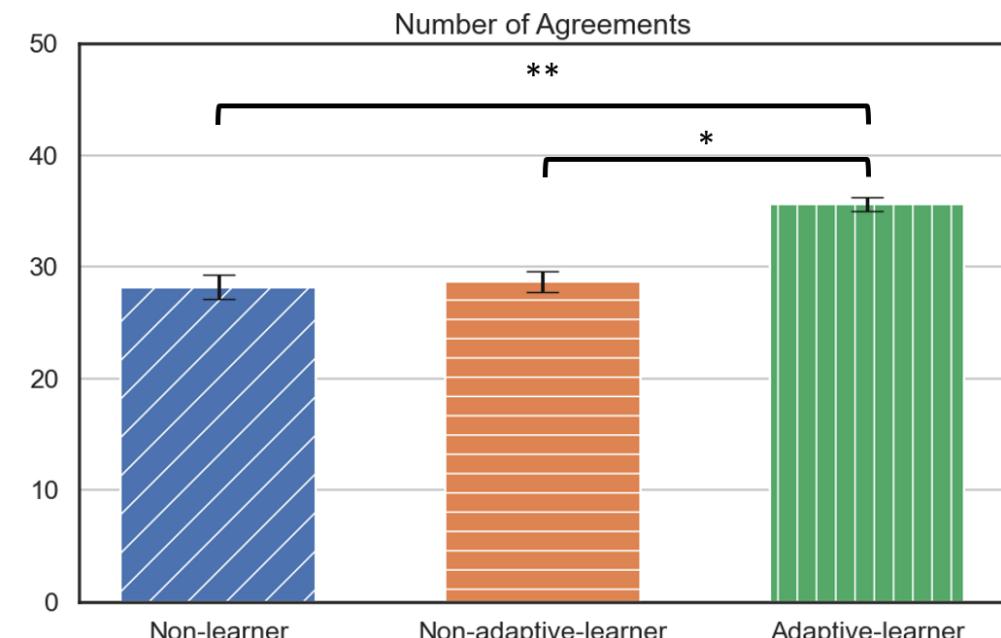
# Results – Behavioral Trust

## STUDY 1 – INFORMED PRIOR



- No significant difference between the three strategies

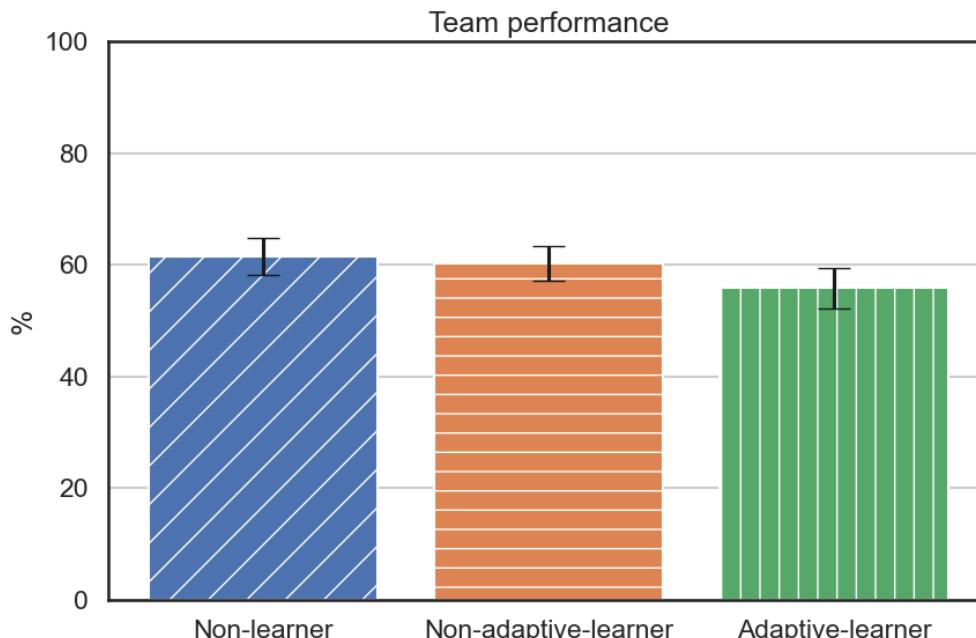
## STUDY 2 – UNIFORM PRIOR



- Adaptive strategy is most agreeable

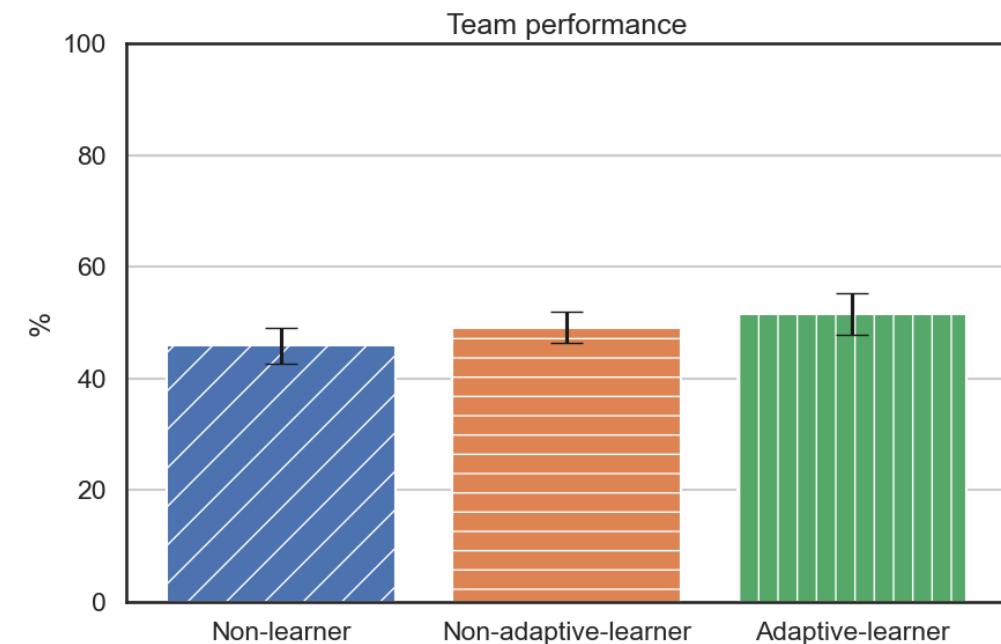
# Results – Team Performance

## STUDY 1 – INFORMED PRIOR



- **No significant difference** between the three strategies

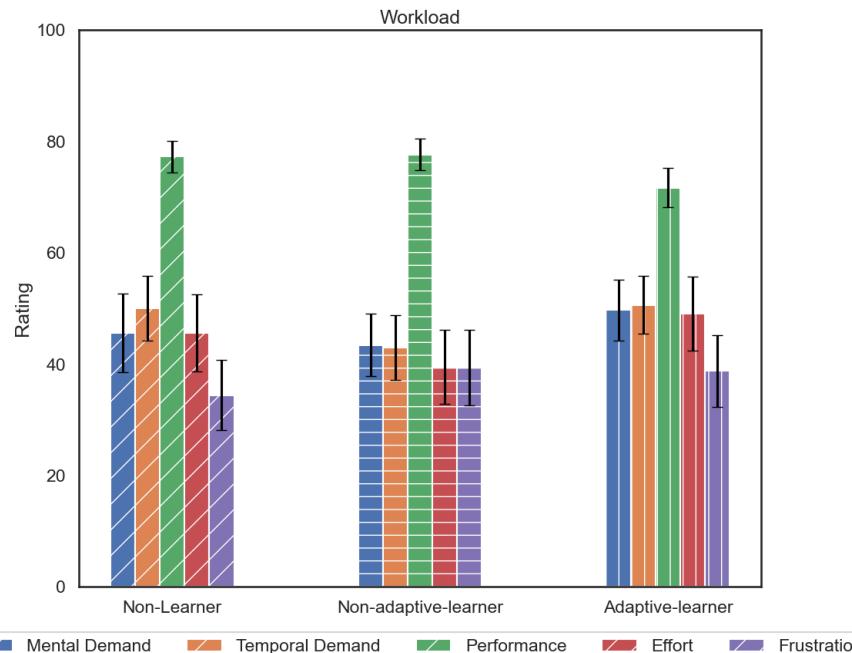
## STUDY 2 – UNIFORM PRIOR



- **No significant difference** between the three strategies

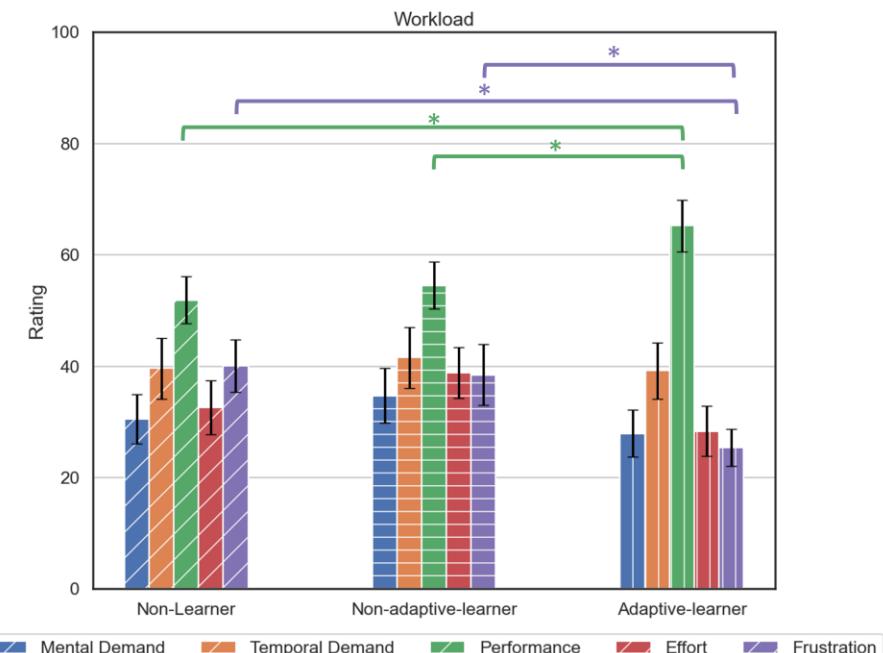
# Results – Workload

## STUDY 1 – INFORMED PRIOR



- No significant difference between the three strategies

## STUDY 2 – UNIFORM PRIOR



- Adaptive strategy associated with **lowest frustration** and **highest perceived performance**

# Phase 2 – Key Takeaways and Limitations

## KEY TAKEAWAYS

- Proposed the **Bounded Rationality Disuse Model** of human behavior
- Proposed a **framework for personalized reward learning** using Bayesian IRL
- Personalized reward alignment works better when starting with a uniform prior on reward weights

## LIMITATIONS

- **No context dependence** in the reward function
- **Limited exploration** of the health and time contexts
- **Limited variance** in the threat levels presented to the participants

# Agenda

---

- Introduction
- Phase 1 – Trust-Driven Markov Decision Process
- Phase 2 – Effects of real-time personalization of reward weights
- **Phase 3** – Effects of fine-grained reward learning and state space exploration
- Future Research Directions

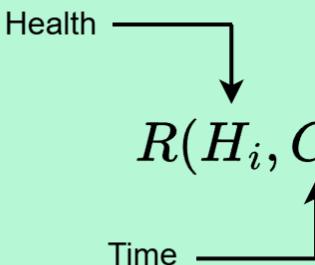
# Reward Function

Phase 2

$$R^o(a_i^h, D_i) = -w^o h(a_i^h, D_i) - (1 - w^o) c(a_i^h) \quad \text{where, } o \in \{h, r\}$$

Phase 3

$$R(H_i, C_i, a_i^h, D_i) = -w(H_i, C_i) h(a_i^h, D_i) - (1 - w(H_i, C_i)) c(a_i^h)$$



- We add the **current health** and **current time** in the state space of the trust-aware MDP
- We **explicitly vary the reward weights** based on the current health and time
- We **do not separate reward functions** for the two agents

# The Critical Chance of Threat Presence - $d^*$

- We see that at a certain chance of threat presence, the two actions result in the same expected reward

$$d^*(H, C) = \frac{(1 - w(H, C))c}{w(H, C)h}$$

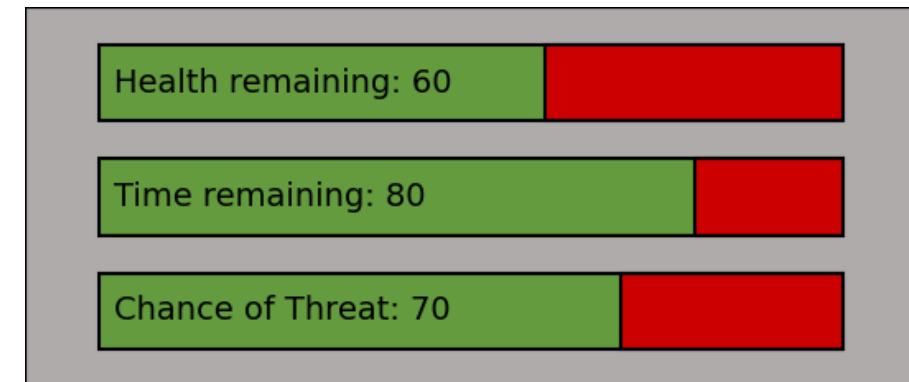
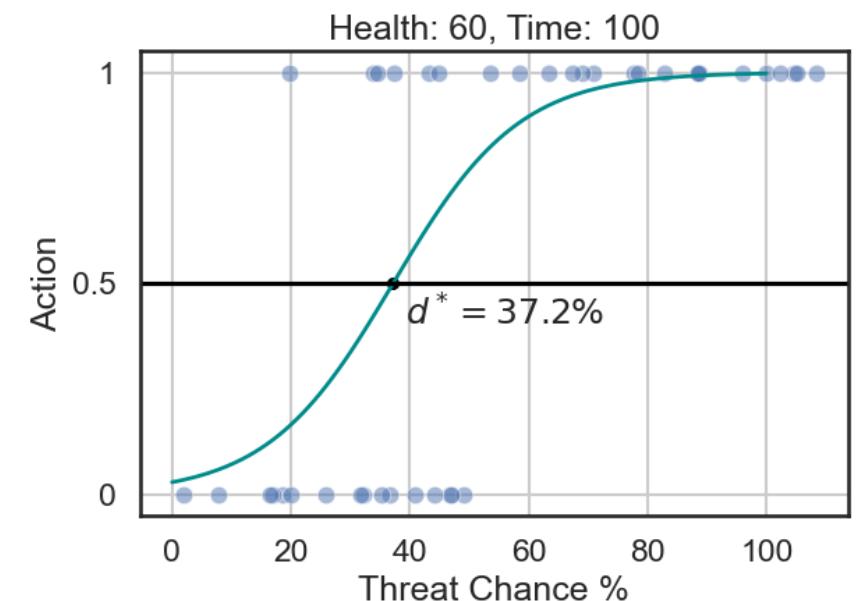
- At a chance below  $d^*$ , NOT USING the armored robot is better on average

$$w(H, C) = \frac{c}{c + hd^*(H, C)}$$


- At a chance above  $d^*$ , USING the armored robot is better on average

# Learning State Dependence of Rewards

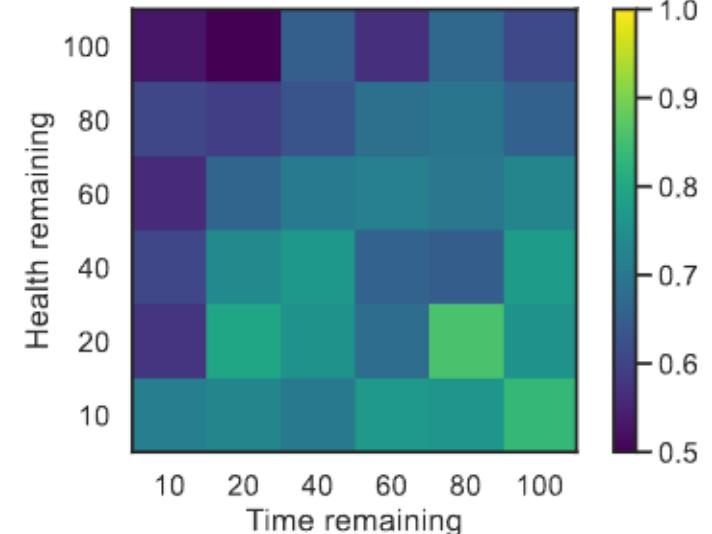
- For a set of states  $\{H_i, C_i\}_{i \in N}$  get responses from participants about their choice of action for a range of threat levels  $d_k \in [0, 100\%]$
- Train logistic regressions for each  $i$ 
  - The threat level  $d^*$  is the threat level at which the classifier gives an equal probability for both actions for the state  $H_i, C_i$
- Data collected via Amazon Mechanical Turk
  - 396 queries (6 health \* 6 time \* 11 threat levels)
  - 124 workers
  - 4092 responses



# State Dependent Reward Function

- Raw data of learned reward weights is then smoothed by fitting a logistic regression model

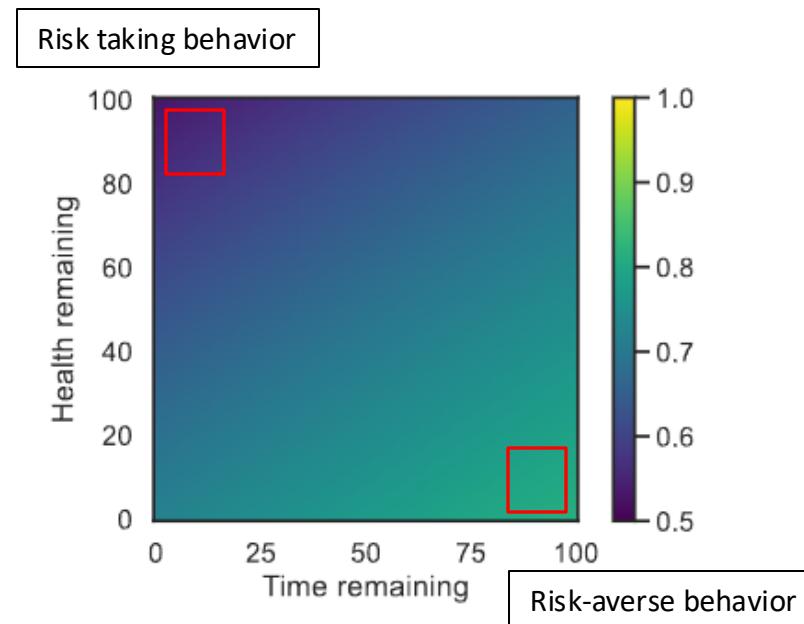
Learnt Reward weights



- Forward selection using the Akaike Information Criterion (AIC) for selecting features for the final model

$$w(H, C) = \frac{1}{1 + \exp(0.26H - 0.17C - 0.79)}$$

Smoothed Reward Weights



# Human-Subject Studies – Interaction Strategies

- We design two interaction strategies for the robot

## Constant

- Uses **constant reward weights** associated with the costs of losing health and losing time
- Similar to the **non-learner strategy** from Phase 2, **with the informed prior**
- Chosen as a **baseline** since the non-learner performed as well as the adaptive-learner in the informed prior case in phase 2

## State Dependent

- Uses the learned **state-dependent reward function** for the reward weights
- Changes **risk appetite** depending on the **current context** of interaction
- **Goal** is to check if people can identify the **changing risk appetite and prefer it**

# Human-Subject Studies – Vulnerability to the Human

- We also consider two conditions of vulnerability for the human

## Low Vulnerability

- The human starts with a pool of **100 health points and 100 time points**
- Operationalized as a **high level of armor and high available mission time**

## High Vulnerability

- The human starts with a pool of **40 health points and 40 time points**
- Operationalized as a **low level of armor and low available mission time**

In both conditions, participants lost

- **10 points of time** on using the RARV
- **10 points of health** on encountering threat without the RARV

# Active Threat Selection

- What we want to convey?
  - The **constant strategy may be too conservative**
  - The **state dependent strategy changes risk appetite**
- So, we need to be smart about how we set the threats and threat levels
- Threats set
  - **Randomly**, with 50% chance
  - **Actively**, with 50% chance

## Random Threat Selection (50%)

$$D \sim \text{Bernoulli}(0.6)$$

$$d \begin{cases} \approx 0.9, & \text{if } D = 1, \\ \approx 0.1, & \text{otherwise.} \end{cases}$$

## Active Threat Selection (50%)

$$d_1^*(H, C) = \frac{(1 - w(H, C))c}{w(H, C)h}$$

$$d_2^* = \frac{(1 - w)c}{wh}$$

$$d_2^* < d < d_1^*$$

$$D \sim \text{Bernoulli}(d)$$

# Human-Subject Studies – Data Collection

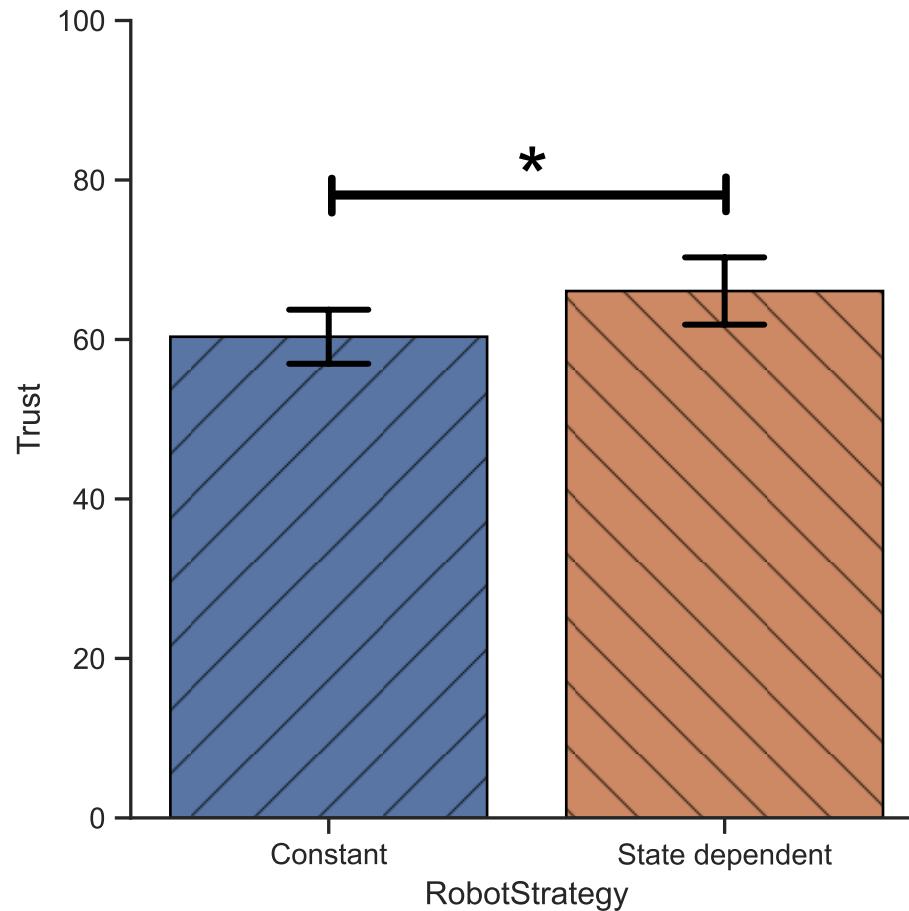
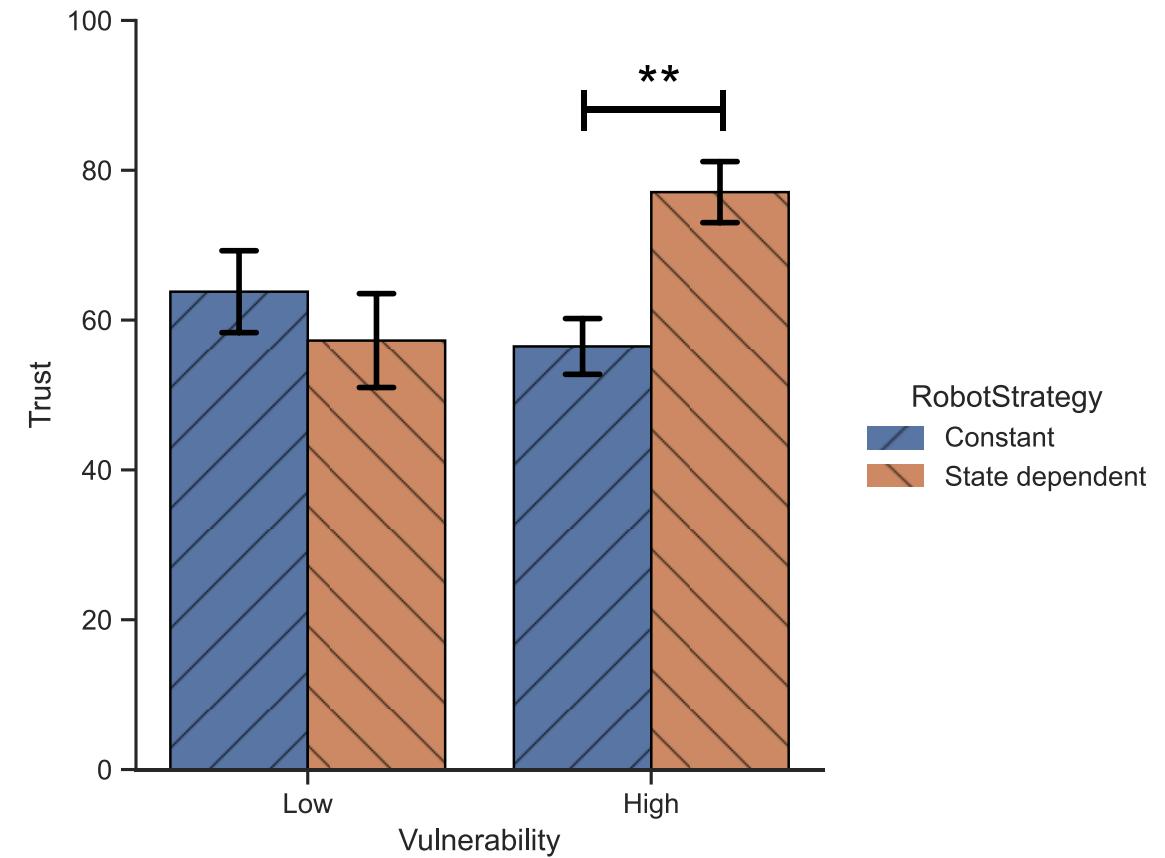
- **2 x 2** mixed factorial design study
  - **Robot strategy** – within-subjects variable
  - **Vulnerability** – between-subjects variable
- 40 participants
  - Each participant did **2 missions**
  - Each mission had **10 sequential searches**
- Removed data from **7 participants** who did not complete the mission
  - 6 from high vulnerability condition
- Final dataset – 33 participants
  - **19 participants** – low vulnerability
  - **14 participants** – high vulnerability



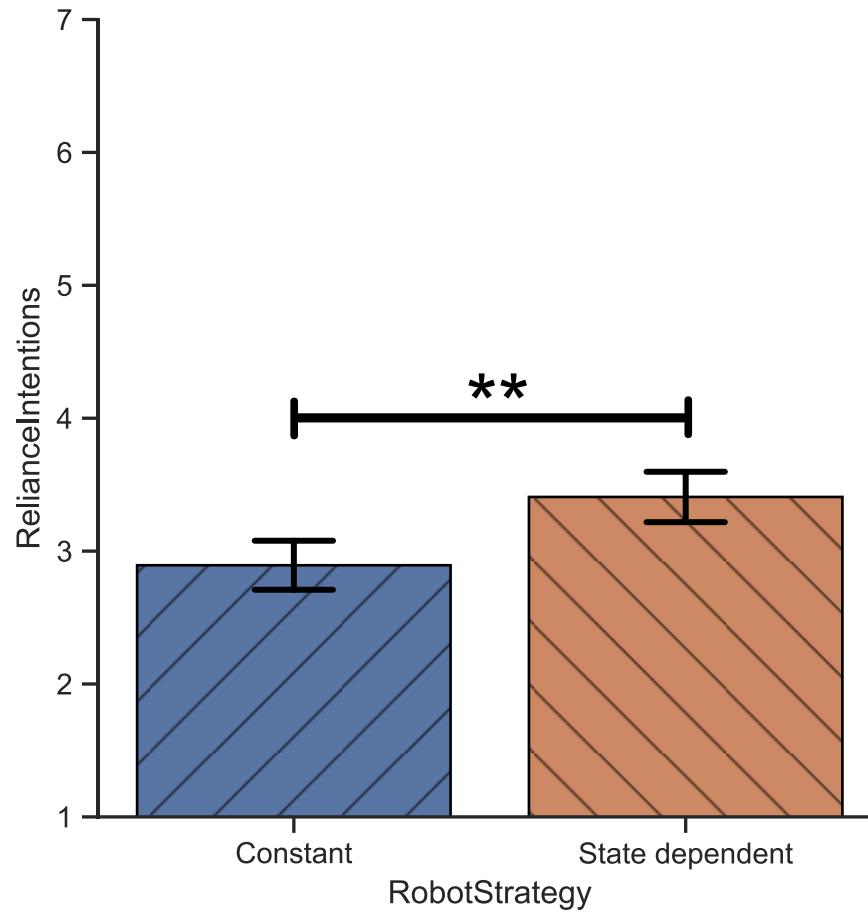
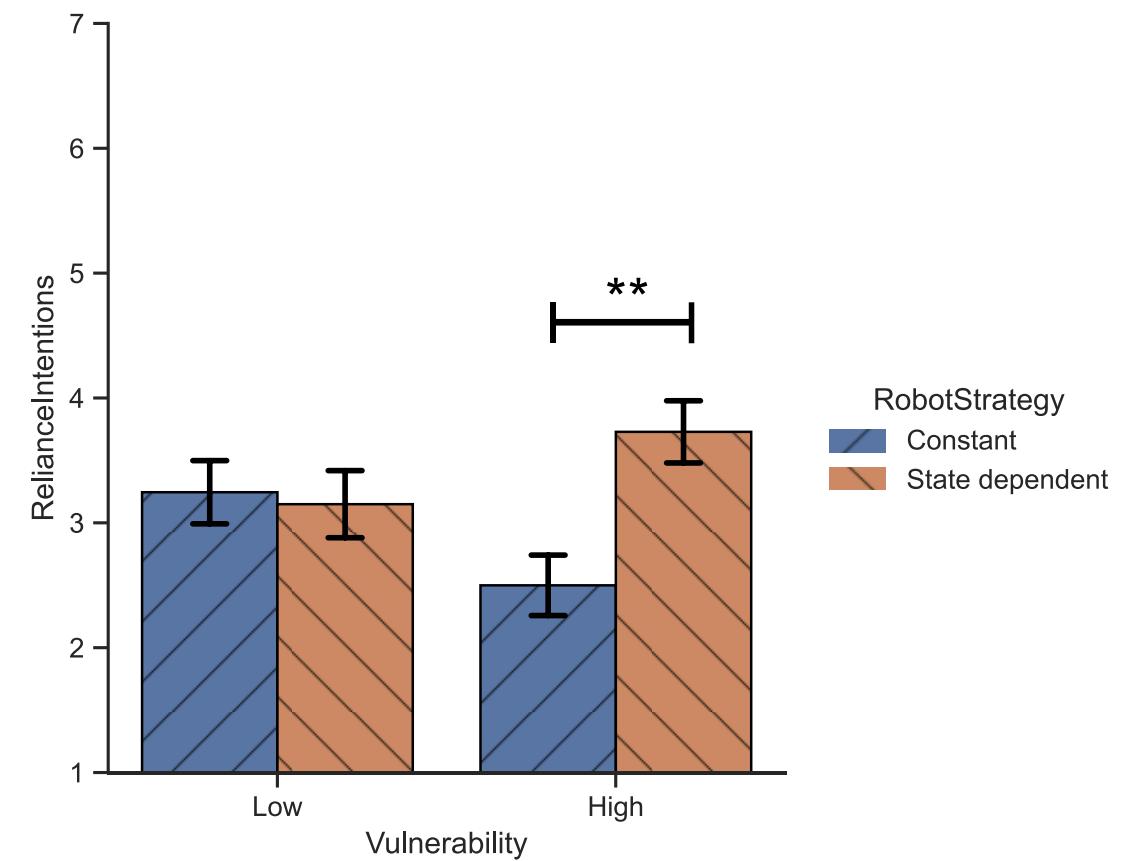
Participants lost

- **10 points of time** on using the RARV
- **10 points of health** on encountering threat without the RARV

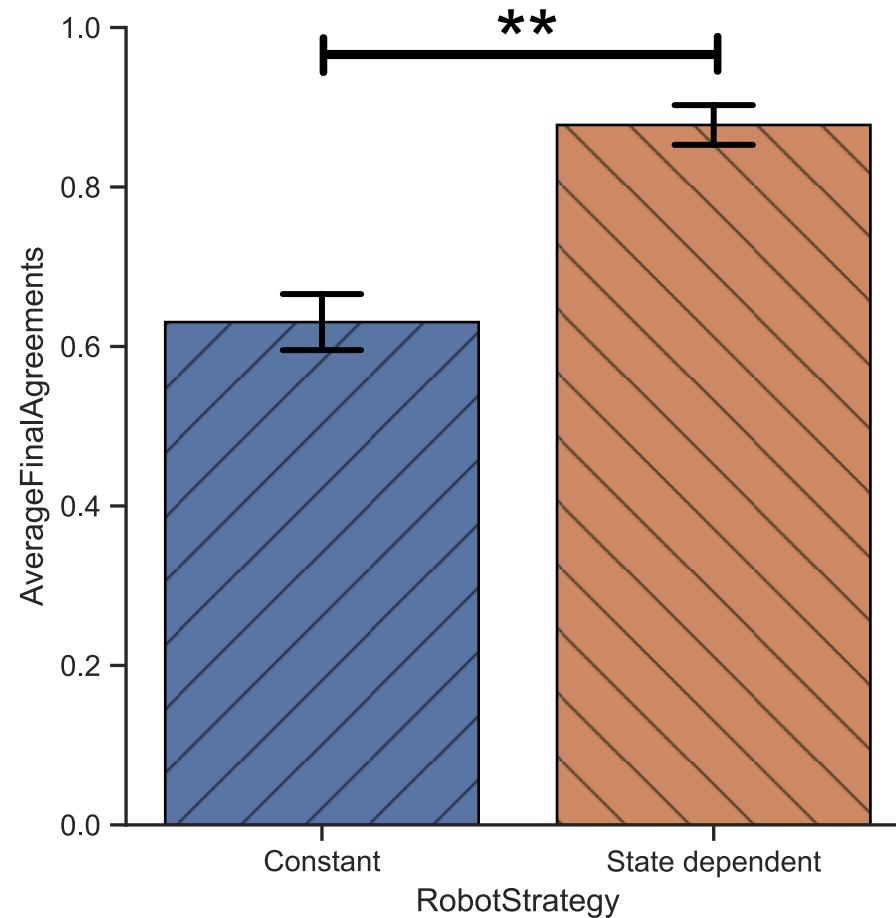
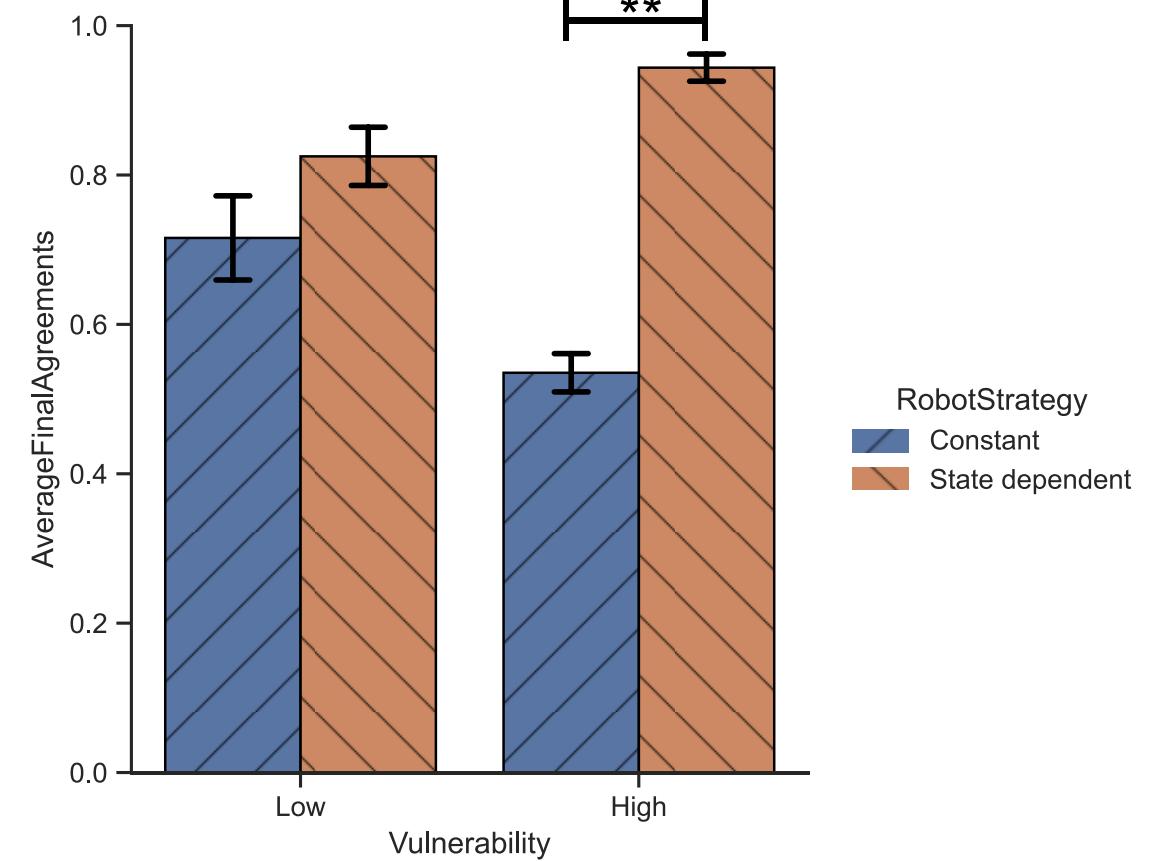
# Results – Subjective Trust



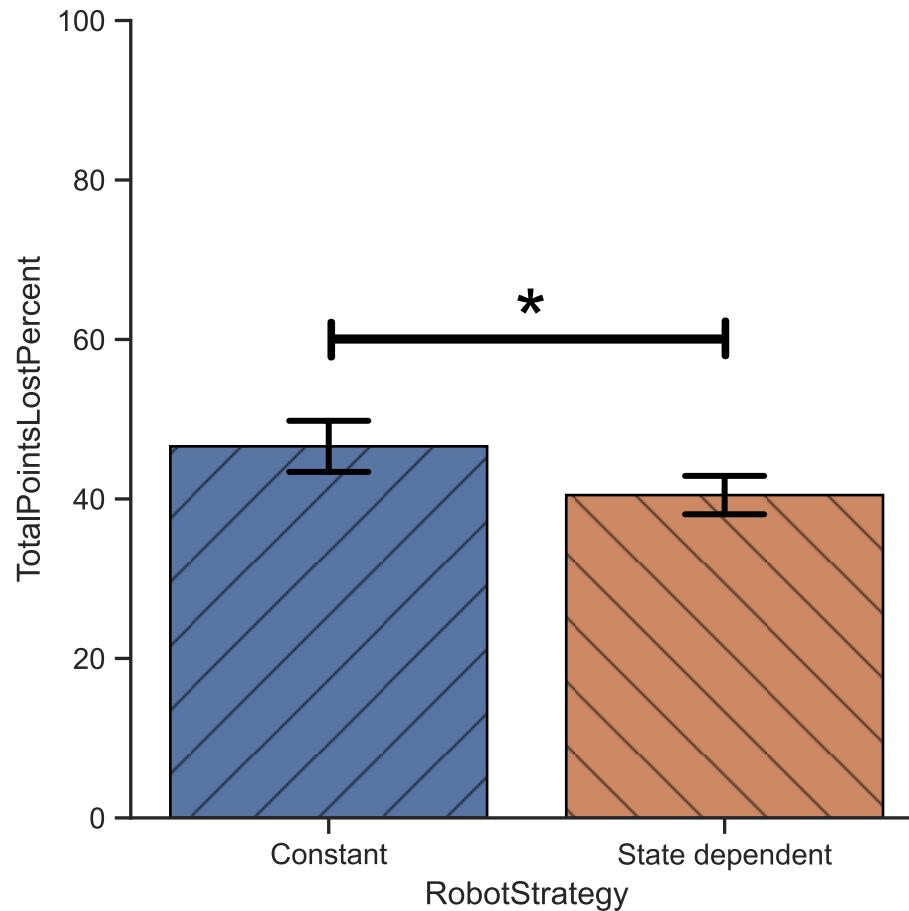
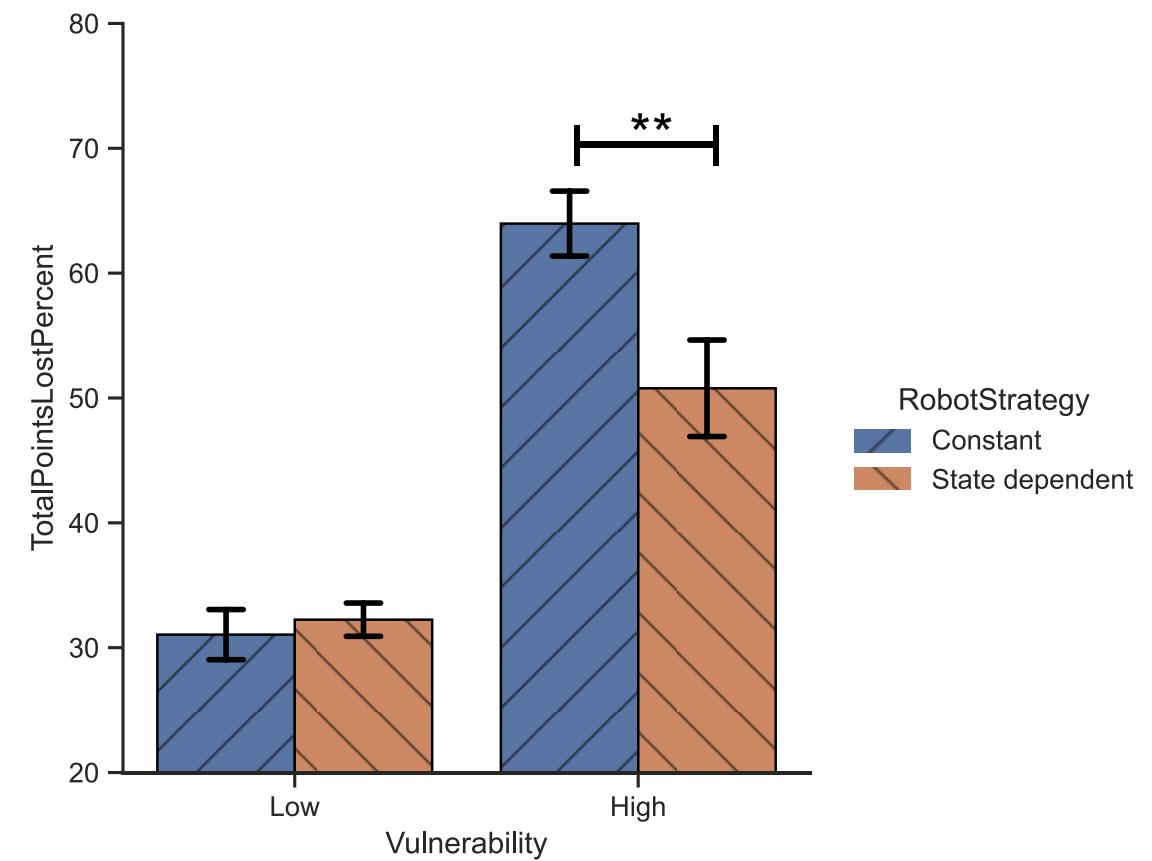
# Results – Reliance Intentions



# Results – Behavioral Trust



# Results – Team Performance



# Phase 3 – Key Takeaways and Limitations

## KEY TAKEAWAYS

- Proposed a **framework for learning state-dependent reward functions** in an ISR mission context
- Conducted **empirical studies** to learn this reward function and to evaluate its **effects on trust and team performance**
- Fine-grained reward functions are **better for trust and team performance**, especially when the **stakes are high**

## LIMITATIONS

- Studies only involved **binary action choices**
- Studies involved dual-objective scenarios in which there is an **obvious bias towards one of the objectives**
- We only considered **dyadic human-robot interaction** scenarios

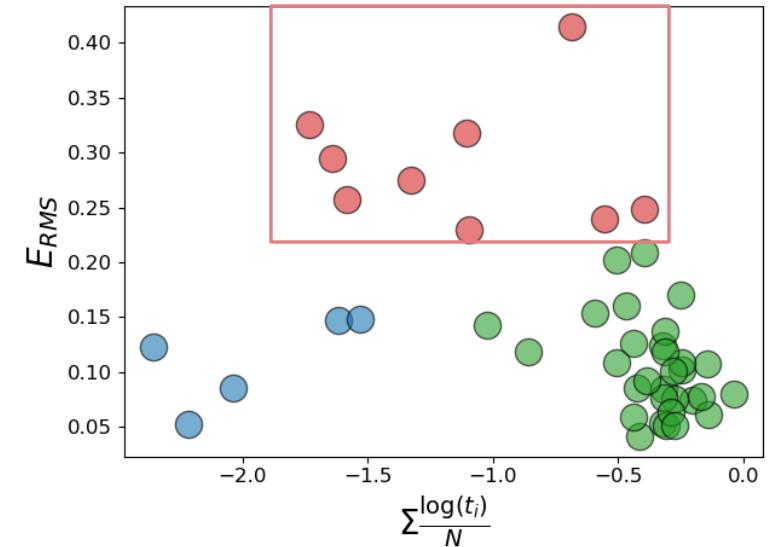
# Agenda

---

- Introduction
- Phase 1 – Trust-Driven Markov Decision Process
- Phase 2 – Effects of real-time personalization of reward weights
- Phase 3 – Effects of fine-grained reward learning and state space exploration
- Future Research Directions

# More Personalized Trust Dynamics Models

- We found that some people exhibit the **Oscillator type trust dynamics**
- The **Beta distribution** trust dynamics model used in this work **struggles to model these dynamics**
- Possible future direction
  - Predict if a person is an oscillator based on their personal characteristics
  - Use a specialized trust dynamics model suited for oscillators when interacting with this person

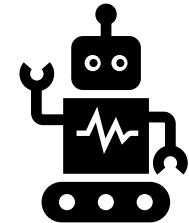
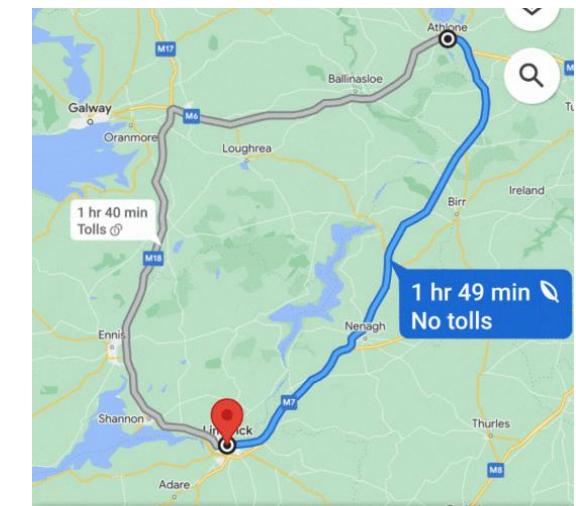


$$\alpha_i = \alpha_0 + \sum_{j=1}^i \gamma^{i-j} p_j v^s$$

$$\beta_i = \beta_0 + \sum_{j=1}^i \gamma^{i-j} (1 - p_j) v^f$$

# Exploring Other HRI Domains

- Other types of interactions that would benefit from a trust-driven approach
  - Human-supervisor, robot-worker
  - Human and robot doing separate tasks toward a common goal
  - Human assigning tasks to a robot
- In the ISR mission context, **most humans prefer saving the soldier's health than saving mission time**
  - More research needs to be done to see if our results translate to situations where **human preferences are more varied**
  - E.g. Time vs Quality of Work, Speed vs Eco-friendliness



1 hr 49 min (118 km)



Save 26% petrol by driving 9 more min  
Fuel-efficient routes usually have fewer hills, less traffic & constant speeds.  
Change engine type

# Incorporating Multiple Actions

- We focused on a **binary action scenario** – USE or NOT USE the RARV
  - Easily define the intuitive **reward-based performance metric**
- In case **multiple actions are available**, humans may
  - Have a non-binary performance metric
  - Exhibit satisficing behavior [13]
  - Something else?
- Studying the **performance metric** could be an interesting direction for future research

**Non-binary performance metric**

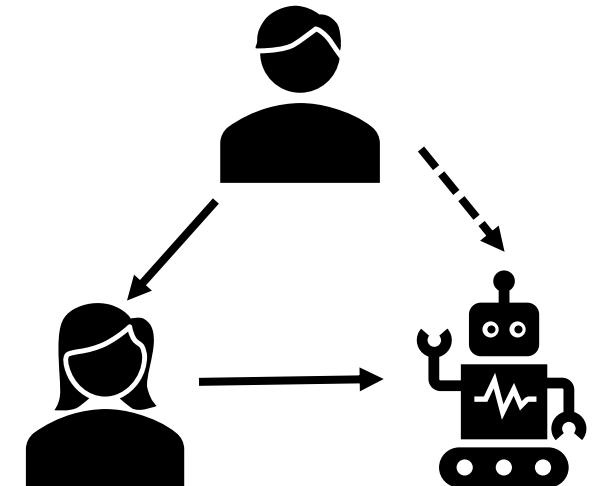
$$p \in (0, 1)$$

**Satisficing performance metric**

$$p = \begin{cases} 1, & \text{if } R(a^r) > R_t \\ 0, & \text{otherwise} \end{cases}$$

# Multi-Human Multi-Robot Scenarios

- We focused on a **dyadic human-robot interaction** scenario
  - Extending this to a **multi-human multi-robot paradigm** brings in an entirely new set of challenges
- **Trust dynamics model**
  - Trust not only evolves through **direct experience** with a robot, but also propagates through **indirect experiences** through another human teammate [14, 15]
- **Task Assignment**
  - How to assign sub-tasks to each dyadic human-robot team?



# Thank you!



Air Force Office of  
Scientific Research



## Committee members:

- Dr. Jessie Yang
- Dr. Cong Shi
- Dr. Patricia Alves-Oliveira
- Dr. Brian Denton
- Dr. Joseph Lyons



# Questions?

---

# References

---

1. Endsley, M. R. (2016). From Here to Autonomy: Lessons Learned From Human–Automation Research: Lessons Learned From Human–Automation Research. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, 59(1), 5-27. <https://doi.org/10.1177/0018720816681350> (Original work published 2017)
2. Lee, J. D., & See, K. A. (2004). Trust in Automation: Designing for Appropriate Reliance. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, 46(1), 50-80. [https://doi.org/10.1518/hfes.46.1.50\\_30392](https://doi.org/10.1518/hfes.46.1.50_30392) (Original work published 2004)
3. S. C. Kohn, E. J. De Visser, E. Wiese, Y.-C. Lee, and T. H. Shaw, "Measurement of Trust in Automation: A Narrative Review and Reference Guide," *Front. Psychol.*, vol. 12, p. 604977, Oct. 2021, doi: 10.3389/fpsyg.2021.604977.
4. Guo, Y., Yang, X.J. Modeling and Predicting Trust Dynamics in Human–Robot Teaming: A Bayesian Inference Approach. *Int J of Soc Robotics* 13, 1899–1909 (2021). <https://doi.org/10.1007/s12369-020-00703-3>
5. L. Rodriguez Rodriguez, C. E. Bustamante Orellana, E. K. Chiou, L. Huang, N. Cooke, and Y. Kang, "A review of mathematical models of human trust in automation," *Front. Neuroergonomics*, vol. 4, p. 1171403, Jun. 2023, doi: 10.3389/fnrgo.2023.1171403.
6. Y. Guo, C. Shi and X. J. Yang, "Reverse Psychology in Trust-Aware Human-Robot Interaction," in *IEEE Robotics and Automation Letters*, vol. 6, no. 3, pp. 4851-4858, July 2021, doi: 10.1109/LRA.2021.3067626
7. Donnellan, M. Brent, et al. "The mini-IPIP scales: tiny-yet-effective measures of the Big Five factors of personality." *Psychological assessment* 18.2 (2006): 192.
8. Lyons, J. B., & Guznov, S. Y. (2019). Individual differences in human–machine trust: A multi-study look at the perfect automation schema. *Theoretical Issues in Ergonomics Science*, 20(4), 440-458.
9. Merritt, S. M., Heimbaugh, H., LaChapell, J., & Lee, D. (2013). I trust it, but I don't know why: Effects of implicit attitudes toward automation on trust in an automated system. *Human factors*, 55(3), 520-534.
10. Muir, B. M., & Moray, N. (1996). Trust in automation. Part II. Experimental studies of trust and human intervention in a process control simulation. *Ergonomics*, 39(3), 429-460.
11. Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In *Advances in psychology* (Vol. 52, pp. 139-183). North-Holland.
12. Xuanming Su, (2008) Bounded Rationality in Newsvendor Models. *Manufacturing & Service Operations Management* 10(4):566-589. <https://doi.org/10.1287/msom.1070.0200>
13. Simon, H.A. 1955. A behavioral model of rational choice. *Quarterly Journal of Economics* 69: 99–118. Reprinted in Simon (1982), ch. 7.2.
14. Yaohui Guo, X. Jessie Yang, and Cong Shi. 2023. TIP: A Trust Inference and Propagation Model in Multi-Human Multi-Robot Teams. In Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (HRI '23). Association for Computing Machinery, New York, NY, USA, 639–643. <https://doi.org/10.1145/3568294.3580164>
15. Hidalgo, D. T., Guo, Y., Lyons, J. B., Shi, C., & Yang, X. J. (2025). Trust Propagation in Multi-Operator Multi-Autonomy (MOMA) Teams: Friends Versus Strangers. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, 0(0). <https://doi.org/10.1177/10711813251370736>
16. S. Bhat, J. B. Lyons, C. Shi, and X. J. Yang, "Clustering Trust Dynamics in a Human-Robot Sequential Decision-Making Task," *IEEE Robot. Autom. Lett.*, vol. 7, no. 4, pp. 8815–8822, Oct. 2022, doi: 10.1109/LRA.2022.3188902.
17. S. Bhat, J. B. Lyons, C. Shi, and X. J. Yang, "Evaluating the Impact of Personalized Value Alignment in Human-Robot Interaction: Insights into Trust and Team Performance Outcomes," in *Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction*, Boulder CO USA: ACM, Mar. 2024, pp. 32–41. doi: 10.1145/3610977.3634921.
18. S. Bhat, J. B. Lyons, C. Shi, and X. J. Yang, "Value Alignment and Trust in Human-Robot Interaction: Insights from Simulation and User Study," in *Discovering the Frontiers of Human-Robot Interaction*, R. Vinjamuri, Ed., Cham: Springer Nature Switzerland, 2024, pp. 39–63. doi: 10.1007/978-3-031-66656-8\_3.
19. S. Bhat, J. B. Lyons, C. Shi and X. J. Yang, "Effects of Learning State Dependence of Reward Weights on Trust and Team Performance in a Human-Robot Sequential Decision-Making Task," 2025 IEEE 5th International Conference on Human-Machine Systems (ICHMS), Abu Dhabi, United Arab Emirates, 2025, pp. 35-40, doi: 10.1109/ICHMS65439.2025.11154177.