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Introduction

Trust is a key factor to 
facilitate effective 
collaboration [1]

• However, most prior research fixes reward functions 
for the human and the robot that the team tries to 
maximize

Trust has been used to drive 
the decision-making of 
robots in human-robot 

teams [2, 3]

• This is done by learning reward functions for the 
human through their behavior

• The effect of value alignment on trust is an unexplored 
area

Value alignment [4, 5] refers 
to the field of study trying 

to match the “values” of the 
robot to that of the human
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Task scenario
• Human-robot team searches through a town for potential 

threats (armed gunmen)

• At each site 𝑖, a drone scans and reports the level of threat መ𝑑𝑖

• The robot knows some prior information about threat in any 
site 𝑑𝑖

• The robot recommends whether 
◦ the human should breach the site directly 

◦ or they should deploy an armored robot for protection
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Task scenario
• The human chooses an action and observes the outcome 

of the action

• The human then reports their level of trust Ƹ𝑡𝑖  on the 
recommendations

• The team then moves to the next site

• Their goal is to:
◦ Minimize damage to the soldier

◦ Finish the mission as quickly as possible
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Task flow
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Problem Formulation
•We formulate the interaction as a trust-aware 

Markov Decision Process (trust-aware MDP)

•A trust-aware MDP consists of:
◦ States

◦ Actions

◦ Reward function

◦ Transition function

◦ Human behavior model
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Trust-Aware MDP
• States: 

• Actions:

• Reward function:

• Transition function [6]:
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Trust-Aware MDP

• Human behavior model:
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We call this the bounded-rationality-disuse model of human behavior

• The idea is that the human will accept and follow the recommendation with a 
probability equal to their current level of trust

• If they do not accept the recommendation, they choose an action based on the 
bounded rationality model

Follow 
recommendation

Choose according 
to bounded 
rationality



Bayesian Inverse Reinforcement Learning
• We use Bayesian Inverse Reinforcement 

Learning to learn personalized reward weights 
for each human during interaction

• This is done by maintaining and updating a 
distribution 𝑏(𝑤) on the possible reward 
weights 𝑤ℎ

ℎ associated with losing health

• We compute the reward weight 𝑤𝑐
ℎ associated 

with losing health as
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Interaction Strategies (Conditions)

Assumes that the human shares the robot’s reward functionNon-learner:

Learns personalized reward functions for each human. It only 
uses these for performance estimation and behavior 
prediction. It still optimizes its original reward function

Non-adaptive-learner:

Learns personalized reward functions for each human and 
adopts it as its own

Adaptive-learner:
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Experiment

• 12 students from the University of Michigan

• Age: 21.9 ± 2.4 years
Participants

• Subjective trust

• Behavioral trust
Measures

• Within-subjects

• Counterbalanced
Design
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Results

• Repeated measures ANOVA were performed for comparing the 
three strategies in various trust measures

• Bonferroni adjustment was used in post-hoc pairwise 
comparisons
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Results (Contd.)

• 𝐹 2, 22 = 4.968, 𝑝 = 0.019

• Adaptive-learner > Non-learner
Average Trust Over 

Interaction

• 𝐹 2, 22 = 7.455, 𝑝 = 0.003

• Adaptive-learner > Non-learner

• Adaptive-learner > Non-adaptive-learner

End-of-mission 
Trust

* - p < 0.05,  † - p < 0.06 13
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Results (Contd.)

• 𝐹 2, 22 = 13.732, 𝑝 < 0.001

• Adaptive-learner > Non-learner

• Adaptive-learner > Non-adaptive-learner

Number of 
Agreements

• 𝐹 2, 22 = 11.962, 𝑝 < 0.001

• Adaptive-learner > Non-learner

• Adaptive-learner > Non-adaptive-learner

Subjective Trust 
(Muir’s Survey)

* - p < 0.05,  † - p < 0.06 14
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Summary and Conclusions

• We demonstrated the use of Bayesian Inverse Reinforcement Learning for aligning 
robot’s values to human preferences

• We compared human trust between three interaction strategies for the robot
Summary

• Aligning to the human’s preferences increases subjective as well as behavioral trustConclusions

• We started the Bayesian IRL algorithm with a uniform prior. Comparisons between 
the strategies when starting with a data-driven prior will be a good next step

• Comparing performance between the three interaction strategies
Future Work
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