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Abstract

As manufacturing facilities integrate Autonomated Guided Vehicles (AGVs) to improve workflow efficiency, enhancing human-
AGYV interaction remains critical for workplace safety. While prior research has focused on vehicle and pedestrian motion
prediction, effective interaction requires two-way communication, where the AGVs clearly convey intentions to the workers
to enhance safety. This study investigates the impact of external Human-Machine Interface (eHMI) integrated with a predictive
model on AGV-worker interaction. We designed LED light strip patterns to convey intentions and selected optimal designs
through an online survey. We deployed three types of AGVs in a virtual reality (VR) environment: Control, Prediction, and
eHMI + Prediction. Participants completed tasks while interacting with AGVs, followed by subjective assessments of trust,
perceived safety, perceived performance, and understandability. A one-way repeated measures ANOVA revealed a significant
improvement in perceived safety from eHMI + Prediction condition compared to the Control condition, suggesting that

explicit communication via eHMI enhances perceived safety in AGV interactions.
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Introduction

As automation continues to transform industrial work-
flows, manufacturing facilities are increasingly integrating
Autonomated Guided Vehicles (AGVs) to enhance effi-
ciency, reduce physical strain, and optimize production
processes (Li & Huang, 2024). While AGVs improve
logistics and minimize repetitive human tasks, their effec-
tiveness depends not only on technological advancements
but also on continuous interactions between AGVs and
workers in complicated environments. Research on AGV-
human interaction has mainly focused on motion predic-
tion models, based on physics, pattern, and planning-based
approaches (Rudenko et al., 2020). While these models
enable AGVs to predict pedestrian movements, effective
interaction requires a two-way communication, where the
AGVs convey their intentions to the workers to enhance
AGV predictability and workplace safety by improving
trust in automation and transparency (Bhat et al., 2024).
An approach to addressing the challenge of effectively
communicating action with humans is the use of an exter-
nal Human-Machine Interface (eHMI) design on the AGV.

eHMI Designs in Conventional Vehicle

Research on eHMI design has explored various interface
modalities that convey vehicle intentions, primarily in the con-
text of vehicle—pedestrian interaction. Carmona et al. (2021)
offers a comprehensive review of recent developments in this
area, categorizing eHMI designs into six types: (1) displays
(Clamann et al., 2017; Urmson et al., 2015), (2) LED light
strips (Bockle et al., 2017; Habibovic et al., 2019; Mahadevan
et al., 2018), (3) front brake lights (Antonescu, 2013; Petzoldt
et al,, 2018), (4) projections, (5) visual contact simulation
(Chang et al., 2017), and (6) auditory interfaces. Habibovic
et al. (2019) reported that their e(HMI system has the potential to
enhance perceived safety and energy efficiency, although they
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also suggested that vehicle motion alone might be sufficient to
convey intention. In a study with a limited participant pool,
Bockle et al. (2017) found that their interface improved pedes-
trians’ perceived safety and comfort when interacting with
shared autonomous vehicles. Additionally, Chang et al. (2017)
developed a robotic eye mechanism to simulate eye contact in a
virtual reality setting, which was found to support faster, more
accurate crossing decisions and enhance perceived safety.

Previous research has primarily focused on interactions
between conventional vehicles and pedestrians. However, a
significant gap remains in understanding how interactions
between AGVs and workers align or diverge from those in
earlier studies. Unlike pedestrian settings, manufacturing
environments are highly dynamic, with workers navigating
freely between workstations. These different environments
pose unique challenges for AGV deployment and interac-
tions. As such, effective AGV integration requires not only
accurate prediction of worker trajectories but also the ability
for workers to anticipate AGV behavior.

Yang et al. (2024) introduced Finite Automaton Models
(FAMs) as a method for predicting worker behavior.
However, the approach does not incorporate methods for
conveying the predictive outcomes through AGV behavior.
Therefore, the present study extends on FAMs by incorporat-
ing eHMI designs, allowing the AGV to communicate its
intentions based on predictive modeling. This integration
aims to enhance mutual understanding between AGVs and
workers in complex industrial settings. We anticipate that the
AGV with both functionalities would show better perfor-
mance compared to the current status of the AGV.

Methods

Design Selection

The ideation process considered types of messages that the
AGYV needs to convey based on the classification of walking
behavior in the previous study (Yang et al., 2024) and the
corresponding behavior of the AGV during the interaction
with the worker. The two models are presented in Figure 1.

We selected five states of the AGV behavior: Constant
Speed, Accelerate, Decelerate, Stopped, and Turn Signal. We
used the 15 design principles (Lee et al., 2017) in selecting
the four design parameters: number/pattern, intensity, fre-
quency, and the direction of the LED, and generated 24
designs in total. We have deployed an online survey to select
eHMI designs with LED light strips, asking which state rep-
resents each design the most. Based on the results and
through internal evaluation, we have selected one design to
represent each message type (Figure 2).

Participants

We collected data from 15 participants (12 Male, 3 Female,
Age=26.33 = 5.51 years) with normal or corrected-to-normal

vision. Each participant received a base payment of $30 for
their participation and an additional $15 depending on their
task performance. The study was approved by the University
of Michigan Institutional Review Board (HUM00248627).

Apparatus and Stimuli

VR Environment of Manufacturing Facility. We designed a Vir-
tual Reality testbed to represent a manufacturing plant envi-
ronment using Unreal Engine 5.3.2. The manufacturing
environment represented an actual Composite Wing Center,
where equipment is carried by AGVs.

VR Headset and Omnidirectional Treadmill. Participants
were requested to interact in the VR environment by wear-
ing a VR headset (Meta Quest Pro headset with two hand-
held controllers) and walking on the omnidirectional
treadmill (KAT Walk C2 Omnidirectional treadmill). The
illustration of the VR environment and equipment can be
seen in Figure 3.

Experimental Design

The experiment used a within-subjects design with differ-
ent types of AGV as the independent variable. Three dif-
ferent types of AGV conditions were presented to the
participants: Control, Prediction loaded AGYV, and
eHMI + Prediction loaded AGV. The control condition
represents the current AGV used in the manufacturing
facility, where the AGV recognizes its surroundings and
responds based on a fixed distance. The AGV would slow
down if the worker is inside the slowdown zone and stop if
the worker is inside the stopping zone (Figure 4). The pre-
diction algorithm wused in both prediction and
eHMI + Prediction is based on the Finite Automaton
Model (Yang et al., 2024), which predicts the workers’
state and trajectory. The AGV predicts the worker’s state
and trajectory 4s ahead of time and determines whether
the worker’s position is within the slowdown or stopping
zone. The prediction is deactivated if the predicted work-
er’s state is “At Station” or “Approach Station” from
Figure 1. If the prediction results indicate that the worker’s
future position is within the future AGV’s yellow zone, it
performs a slowdown behavior. Different types of AGVs
were presented randomly to the participants in order to
mitigate any learning and training effects. Four subjective
measurements were rated through a 7-point Likert scale as
dependent variables: trust, perceived safety, perceived per-
formance, and understandability.

o Trust: “I trust the AGV to interact with me well”

e Perceived Safety: “I feel safe sharing the same space
with the AGV”

e Perceived Performance: “The AGV behaved as 1
expected during the interaction with me”
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Figure 1. (a) Finite automaton model. (b) AGV behavior states. (a) normal operation loop of finite automaton model from Yang et al.

(2024). (b) Five states of AGV behavior model.

Figure 2. Example illustration of the selected eHMI design for
the constant speed message type.

e Understandability: “I understood what the AGV was
trying to do during the interaction with me”

Procedure

Participants provided informed consent upon arrival and
were given an introduction session before the experiment.
The introduction included general information related to the
field of AGV and how to use the equipment. After complet-
ing the introduction session, the participants filled out a
demographic survey, followed by wearing the equipment
with the help of the experimenter (wearing the footwear for
the omnidirectional treadmill, getting on the treadmill, and
wearing the headset and controllers). Participants completed
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Figure 3. (a) VR environment overview. (b) Equipment used in
the VR setup.
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Figure 4. Slowdown and stopping zones depicted as yellow and
red boundaries around the AGV.

a training session that helped familiarize them with walking
on the treadmill, viewing the VR environment through the
headset, and using the controllers to interact with objects
inside the VR environment. Then they performed 10 trials
per condition, resulting in a total of 30 trials throughout the
entire experiment. Each trial required the participant to carry
a toolbox from one station to another while memorizing a
three-digit number displayed on the toolbox. When picking
up the toolbox, a three-digit number was visible and disap-
peared after 3s. The participant had to place the toolbox at
the target station at the location corresponding to the three-
digit number (Figure 5). The location of the stations and the
AGYV paths were designed to include the six types of human-
robot spatial interaction (Molina et al., 2024) between work-
ers and the AGV. After each trial, the participants were asked
to indicate whether they noticed the AGV around them dur-
ing the trial, and respond to four subjective ratings of their
trust, perceived safety, perceived performance, and under-
standability on the AGV on a 7-point Likert scale.

Data Preprocessing and Analysis

The data from the subjective measurements were prepro-
cessed by averaging out the values of the trials within the
same condition for each participant. We then conducted a
one-way repeated measures Analysis of Variance (ANOVA)
to compare the differences in trust, perceived safety, per-
ceived performance, and understandability across different
conditions.

Results and Discussion

The results from ANOVA indicated that there was a signifi-
cant difference across conditions in perceived safety (F(2,
14)=4.408, p=.022). Further pairwise comparison indicated
that there was a significant difference between the control
condition and the eHMI+prediction condition in perceived
safety (p=.048), indicating a higher rating of perceived
safety in eHMI+prediction condition over the control condi-
tion. No other significant difference was found across all
measurements: trust (F(2, 14)=2.785, p=.079), perceived
performance (F(2, 14)=2.425, p=.107), understandability
(F(2,14)=2.225, p=.127) (Figure 6).

In this study, we aimed to evaluate the effectiveness of
the trajectory prediction algorithm and the light strip pattern
eHMI design on trust, perceived safety, perceived perfor-
mance, and understandability in AGV-worker interaction.
We hypothesized that the eHMI + Prediction condition
would perform better in terms of the subjective ratings. In
order to validate our hypothesis, we conducted a human-
subject experiment in a VR environment for the participants
to interact with three different types of AGVs. The prelimi-
nary results indicated a significant difference in perceived
safety, where the eHMI + Prediction condition showed
higher ratings compared to the Control condition. This
aligns with previous studies in conventional vehicle interac-
tion, where the results indicated enhanced perceived safety
by incorporating eHMI designs on the vehicle (Bockle et al.,
2017; Chang et al., 2017; Habibovic et al., 2019). The insig-
nificance between the Control condition and the Prediction
condition and between the Prediction condition and the
eHMI + Prediction condition indicates that using both the
prediction algorithm and the eHMI design can significantly
enhance perceived safety better than utilizing the prediction
algorithm alone, emphasizing the importance of automation
conveying its intention to make an effective two-way com-
munication. The current study has several limitations. First,
this is a preliminary result with a small sample size of 15
participants. We anticipate potential possibility that the non-
significance with p values around .1 might change when we
gather more participants in the future. Second, this study
focused on the LED light strip pattern type of eHMI design,
and the results might differ when different types of eHMI
are incorporated. Third, the participants did not go through
a training process to learn about the eHMI design, which
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Figure 5. (a) Toolbox delivery task. (b) Top view of the VR environment with station locations.

means the current results rely on the intuitiveness and
instincts of the design.

Conclusion

Our study aimed to evaluate the effectiveness of the previ-
ously developed trajectory prediction algorithm, along with
the eHMI design on AGV-worker interaction. Our study also

aimed to contribute in confirming whether the results from
the interaction between conventional vehicles and pedestrian
is observed the same in AGV-worker interaction. Our results
indicate that the AGV with both functionalities enhances per-
ceived safety in the workplace. Future research should focus
on further investigating the effectiveness of different types of
eHMI designs considering the environmental factors of the
workplace.
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Figure 6. Bar graphs showing post hoc multiple comparisons.
(*: p <.05). Numbers above bars represent the mean and

standard error for each condition.
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