
https://doi.org/10.1177/10711813251372529

Proceedings of the Human Factors and 
Ergonomics Society Annual Meeting
2025, Vol. 69(1) 1166–1172
Copyright © 2025 Human Factors  
and Ergonomics Society
DOI: 10.1177/10711813251372529
journals.sagepub.com/home/pro

Poster Session 1

Introduction

As automation continues to transform industrial work-
flows, manufacturing facilities are increasingly integrating 
Autonomated Guided Vehicles (AGVs) to enhance effi-
ciency, reduce physical strain, and optimize production 
processes (Li & Huang, 2024). While AGVs improve 
logistics and minimize repetitive human tasks, their effec-
tiveness depends not only on technological advancements 
but also on continuous interactions between AGVs and 
workers in complicated environments. Research on AGV-
human interaction has mainly focused on motion predic-
tion models, based on physics, pattern, and planning-based 
approaches (Rudenko et  al., 2020). While these models 
enable AGVs to predict pedestrian movements, effective 
interaction requires a two-way communication, where the 
AGVs convey their intentions to the workers to enhance 
AGV predictability and workplace safety by improving 
trust in automation and transparency (Bhat et  al., 2024). 
An approach to addressing the challenge of effectively 
communicating action with humans is the use of an exter-
nal Human-Machine Interface (eHMI) design on the AGV.

eHMI Designs in Conventional Vehicle

Research on eHMI design has explored various interface 
modalities that convey vehicle intentions, primarily in the con-
text of vehicle–pedestrian interaction. Carmona et  al. (2021) 
offers a comprehensive review of recent developments in this 
area, categorizing eHMI designs into six types: (1) displays 
(Clamann et  al., 2017; Urmson et  al., 2015), (2) LED light  
strips (Böckle et al., 2017; Habibovic et al., 2019; Mahadevan 
et al., 2018), (3) front brake lights (Antonescu, 2013; Petzoldt 
et  al., 2018), (4) projections, (5) visual contact simulation 
(Chang et  al., 2017), and (6) auditory interfaces. Habibovic 
et al. (2019) reported that their eHMI system has the potential to 
enhance perceived safety and energy efficiency, although they 
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also suggested that vehicle motion alone might be sufficient to 
convey intention. In a study with a limited participant pool, 
Böckle et al. (2017) found that their interface improved pedes-
trians’ perceived safety and comfort when interacting with 
shared autonomous vehicles. Additionally, Chang et al. (2017) 
developed a robotic eye mechanism to simulate eye contact in a 
virtual reality setting, which was found to support faster, more 
accurate crossing decisions and enhance perceived safety.

Previous research has primarily focused on interactions 
between conventional vehicles and pedestrians. However, a 
significant gap remains in understanding how interactions 
between AGVs and workers align or diverge from those in 
earlier studies. Unlike pedestrian settings, manufacturing 
environments are highly dynamic, with workers navigating 
freely between workstations. These different environments 
pose unique challenges for AGV deployment and interac-
tions. As such, effective AGV integration requires not only 
accurate prediction of worker trajectories but also the ability 
for workers to anticipate AGV behavior.

Yang et al. (2024) introduced Finite Automaton Models 
(FAMs) as a method for predicting worker behavior. 
However, the approach does not incorporate methods for 
conveying the predictive outcomes through AGV behavior. 
Therefore, the present study extends on FAMs by incorporat-
ing eHMI designs, allowing the AGV to communicate its 
intentions based on predictive modeling. This integration 
aims to enhance mutual understanding between AGVs and 
workers in complex industrial settings. We anticipate that the 
AGV with both functionalities would show better perfor-
mance compared to the current status of the AGV.

Methods

Design Selection

The ideation process considered types of messages that the 
AGV needs to convey based on the classification of walking 
behavior in the previous study (Yang et  al., 2024) and the 
corresponding behavior of the AGV during the interaction 
with the worker. The two models are presented in Figure 1.

We selected five states of the AGV behavior: Constant 
Speed, Accelerate, Decelerate, Stopped, and Turn Signal. We 
used the 15 design principles (Lee et al., 2017) in selecting 
the four design parameters: number/pattern, intensity, fre-
quency, and the direction of the LED, and generated 24 
designs in total. We have deployed an online survey to select 
eHMI designs with LED light strips, asking which state rep-
resents each design the most. Based on the results and 
through internal evaluation, we have selected one design to 
represent each message type (Figure 2).

Participants

We collected data from 15 participants (12 Male, 3 Female, 
Age = 26.33 ± 5.51 years) with normal or corrected-to-normal 

vision. Each participant received a base payment of $30 for 
their participation and an additional $15 depending on their 
task performance. The study was approved by the University 
of Michigan Institutional Review Board (HUM00248627).

Apparatus and Stimuli

VR Environment of Manufacturing Facility.  We designed a Vir-
tual Reality testbed to represent a manufacturing plant envi-
ronment using Unreal Engine 5.3.2. The manufacturing 
environment represented an actual Composite Wing Center, 
where equipment is carried by AGVs.

VR Headset and Omnidirectional Treadmill.  Participants 
were requested to interact in the VR environment by wear-
ing a VR headset (Meta Quest Pro headset with two hand-
held controllers) and walking on the omnidirectional 
treadmill (KAT Walk C2 Omnidirectional treadmill). The 
illustration of the VR environment and equipment can be 
seen in Figure 3.

Experimental Design

The experiment used a within-subjects design with differ-
ent types of AGV as the independent variable. Three dif-
ferent types of AGV conditions were presented to the 
participants: Control, Prediction loaded AGV, and 
eHMI + Prediction loaded AGV. The control condition 
represents the current AGV used in the manufacturing 
facility, where the AGV recognizes its surroundings and 
responds based on a fixed distance. The AGV would slow 
down if the worker is inside the slowdown zone and stop if 
the worker is inside the stopping zone (Figure 4). The pre-
diction algorithm used in both prediction and 
eHMI + Prediction is based on the Finite Automaton 
Model (Yang et  al., 2024), which predicts the workers’ 
state and trajectory. The AGV predicts the worker’s state 
and trajectory 4 s ahead of time and determines whether 
the worker’s position is within the slowdown or stopping 
zone. The prediction is deactivated if the predicted work-
er’s state is “At Station” or “Approach Station” from 
Figure 1. If the prediction results indicate that the worker’s 
future position is within the future AGV’s yellow zone, it 
performs a slowdown behavior. Different types of AGVs 
were presented randomly to the participants in order to 
mitigate any learning and training effects. Four subjective 
measurements were rated through a 7-point Likert scale as 
dependent variables: trust, perceived safety, perceived per-
formance, and understandability.

•• Trust: “I trust the AGV to interact with me well”
•• Perceived Safety: “I feel safe sharing the same space 

with the AGV”
•• Perceived Performance: “The AGV behaved as I 

expected during the interaction with me”
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•• Understandability: “I understood what the AGV was 
trying to do during the interaction with me”

Procedure

Participants provided informed consent upon arrival and 
were given an introduction session before the experiment. 
The introduction included general information related to the 
field of AGV and how to use the equipment. After complet-
ing the introduction session, the participants filled out a 
demographic survey, followed by wearing the equipment 
with the help of the experimenter (wearing the footwear for 
the omnidirectional treadmill, getting on the treadmill, and 
wearing the headset and controllers). Participants completed 

Figure 1.  (a) Finite automaton model. (b) AGV behavior states. (a) normal operation loop of finite automaton model from Yang et al. 
(2024). (b) Five states of AGV behavior model.

Figure 2.  Example illustration of the selected eHMI design for 
the constant speed message type.
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a training session that helped familiarize them with walking 
on the treadmill, viewing the VR environment through the 
headset, and using the controllers to interact with objects 
inside the VR environment. Then they performed 10 trials 
per condition, resulting in a total of 30 trials throughout the 
entire experiment. Each trial required the participant to carry 
a toolbox from one station to another while memorizing a 
three-digit number displayed on the toolbox. When picking 
up the toolbox, a three-digit number was visible and disap-
peared after 3 s. The participant had to place the toolbox at 
the target station at the location corresponding to the three-
digit number (Figure 5). The location of the stations and the 
AGV paths were designed to include the six types of human-
robot spatial interaction (Molina et al., 2024) between work-
ers and the AGV. After each trial, the participants were asked 
to indicate whether they noticed the AGV around them dur-
ing the trial, and respond to four subjective ratings of their 
trust, perceived safety, perceived performance, and under-
standability on the AGV on a 7-point Likert scale.

Data Preprocessing and Analysis

The data from the subjective measurements were prepro-
cessed by averaging out the values of the trials within the 
same condition for each participant. We then conducted a 
one-way repeated measures Analysis of Variance (ANOVA) 
to compare the differences in trust, perceived safety, per-
ceived performance, and understandability across different 
conditions.

Results and Discussion

The results from ANOVA indicated that there was a signifi-
cant difference across conditions in perceived safety (F(2, 
14) = 4.408, p = .022). Further pairwise comparison indicated 
that there was a significant difference between the control 
condition and the eHMI+prediction condition in perceived 
safety (p = .048), indicating a higher rating of perceived 
safety in eHMI+prediction condition over the control condi-
tion. No other significant difference was found across all 
measurements: trust (F(2, 14) = 2.785, p = .079), perceived 
performance (F(2, 14) = 2.425, p = .107), understandability 
(F(2, 14) = 2.225, p = .127) (Figure 6).

In this study, we aimed to evaluate the effectiveness of 
the trajectory prediction algorithm and the light strip pattern 
eHMI design on trust, perceived safety, perceived perfor-
mance, and understandability in AGV-worker interaction. 
We hypothesized that the eHMI + Prediction condition 
would perform better in terms of the subjective ratings. In 
order to validate our hypothesis, we conducted a human-
subject experiment in a VR environment for the participants 
to interact with three different types of AGVs. The prelimi-
nary results indicated a significant difference in perceived 
safety, where the eHMI + Prediction condition showed 
higher ratings compared to the Control condition. This 
aligns with previous studies in conventional vehicle interac-
tion, where the results indicated enhanced perceived safety 
by incorporating eHMI designs on the vehicle (Böckle et al., 
2017; Chang et al., 2017; Habibovic et al., 2019). The insig-
nificance between the Control condition and the Prediction 
condition and between the Prediction condition and the 
eHMI + Prediction condition indicates that using both the 
prediction algorithm and the eHMI design can significantly 
enhance perceived safety better than utilizing the prediction 
algorithm alone, emphasizing the importance of automation 
conveying its intention to make an effective two-way com-
munication. The current study has several limitations. First, 
this is a preliminary result with a small sample size of 15 
participants. We anticipate potential possibility that the non-
significance with p values around .1 might change when we 
gather more participants in the future. Second, this study 
focused on the LED light strip pattern type of eHMI design, 
and the results might differ when different types of eHMI 
are incorporated. Third, the participants did not go through 
a training process to learn about the eHMI design, which 

Figure 4.  Slowdown and stopping zones depicted as yellow and 
red boundaries around the AGV.

Figure 3.  (a) VR environment overview. (b) Equipment used in 
the VR setup.
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means the current results rely on the intuitiveness and 
instincts of the design.

Conclusion

Our study aimed to evaluate the effectiveness of the previ-
ously developed trajectory prediction algorithm, along with 
the eHMI design on AGV-worker interaction. Our study also 

aimed to contribute in confirming whether the results from 
the interaction between conventional vehicles and pedestrian 
is observed the same in AGV-worker interaction. Our results 
indicate that the AGV with both functionalities enhances per-
ceived safety in the workplace. Future research should focus 
on further investigating the effectiveness of different types of 
eHMI designs considering the environmental factors of the 
workplace.

Figure 5.  (a) Toolbox delivery task. (b) Top view of the VR environment with station locations.
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