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Introduction

• Humans and robots are increasingly sharing the 
same physical space

• Past research has focused on designing 
collision-free trajectories for robots in crowded 
environments

• We envision a future where robots not only avoid 
collisions, but also actively guide them towards 
their objectives

• Such robots can help with crowd control, 
evacuation, tour guides, etc.
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Related Work

• Design of robot policies that help them move smoothly in 
crowded environments

• Major focus on collision avoidance
• Performance measured through disturbance to human 

trajectories

Social Navigation

• Prior research focused on studying changes in human 
behavior due to robot behavior

• More recently, research has focused on designing robot 
behaviors that actively modify human behaviors

Influencing 
Human Behavior
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Goal of this study

• We consider a hallway crossing 
scenario

• Each agent starts at one end of the 
hallway and moves towards the 
opposite end (red and blue dashed 
lines)

• The robot wants the target agent to 
reach the virtual goal line (gold dashed 
line)

• The virtual goal line is always 2m 
ahead of the target agent
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Sample initial conditions
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Illustrative example
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Results
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Major Assumptions

• We leverage the idea that individuals will inherently try and avoid collisions when moving in 
a crowded environment

• We assume that this collision avoidance behavior is modeled using Optimal Reciprocal 
Collision Avoidance (ORCA)

• Under this assumption, we show that we can design a policy for a robot that can implicitly 
nudge a target agent toward a desired direction without affecting the other agents in the 
environment

• We also assume that all agents in the scene use ORCA with the same policy parameters
– This assumption is made in all research dealing with ORCA since it is the only way to guarantee collision 

avoidance
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ORCA Preliminaries

•  
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ORCA Preliminaries

•  
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I-ORCA
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•  
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I-ORCA
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I-ORCA
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I-ORCA
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I-ORCA
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I-ORCA
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I-ORCA
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I-ORCA
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Nudge Efficiency

• Not all positions around the target agent are equally 
good at nudging it towards the desired direction

• Nudge efficiency is defined as the similarity between 
the target agent’s new velocity after nudging to the 
desired velocity
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Nudge Efficiency

• The nudge efficiency was computed by
– Sampling the robot’s position around the target agent
– Setting the robot’s velocity using I-ORCA
– Getting the target agent’s velocity at the next time step 

using its motion model
– Computing the cosine similarity between the desired 

velocity and the new velocity

• The illustration to the right shows the case when the 
target agent uses ORCA

• We see a similar plot when the target agent uses the 
social forces model
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Nudge efficiency

Relative velocities
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Smooth Efficient Nudging Policy
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Smooth Efficient Nudging Policy
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Target agent
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Smooth Efficient Nudging Policy
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Checks the following conditions:

1. The ego agent should be close to the point given 
by ChoosePoint

2. The ego agent must be on the same side of the 
boundary as the chosen point

3. The ego agent’s y-coordinate should be more than 
that of the target agent

Note: The third condition is context dependent. It works 
in our case since we want to nudge the target agent 
toward lower y-coordinates

Robot

Target agent
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Smooth Efficient Nudging Policy
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Caveat: 
• This can lead to collisions between the robot and 

the target agent
• We saw collisions in <5% of the simulations we ran
• Some policy parameters can be tuned to better 

avoid collisions

Robot

Target agent
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Smooth Efficient Nudging Policy
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Robot

Target agent
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Smooth Efficient Nudging Policy
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Robot

Target agent
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Smooth Efficient Nudging Policy
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Any non-increasing function of the distance 
between the ego agent and the chosen point 
should work here



© 2021 Honda Research Institute USA, Inc.

 

• The desired velocity is set using the next position of 
the target agent, the virtual goal line, and the 
current velocity of the target agent

• First, the velocity with max speed is computed from 
the next anticipated position to the top of the virtual 
goal line

• If the y-component of this velocity is less than that 
of the target agent, 

– Set this velocity as the desired velocity
• Else,

– Set the current velocity of the target agent as the desired 
velocity
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Case 1

Case 2
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Results - Nudge success
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Results – Disturbance to non-target agents
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Results – Disturbance to non-target agents
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Results – Disturbance to non-target agents
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Illustrative example
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Our Policy Baseline
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Summary

• We proposed the I-ORCA algorithm that inverts ORCA to generate velocities for an agent to 
optimally nudge another agent in the desired direction

• We computed the nudge efficiency metric, which showed that “leading” the agent toward the 
desired direction is the best way to nudge it

• We proposed the smooth efficient nudge policy that utilizes this result to smoothly nudge the 
target agent toward the desired objective

• Our results indicate that an agent using our policy was able to implicitly nudge the target 
agent while not disturbing the other non-target agents in the scene

– These results were generalizable across the ORCA and Social Forces motion models
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Limitations and Future Work

• Highly sensitive to policy parameters
– Future work could try online learning of parameters

• Cannot guarantee collision avoidance with target agent

• Not personalized
– If other agents are humans, they could have their own policy parameters

• Setting the desired velocity
– Can be set up as an optimization problem to minimize discomfort to the target agent

• Detecting impossible cases

• Incorporating learning of agents’ goals
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THANK YOU, QUESTIONS?
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