Identifying Worker Motion Through a Manufacturing Plant: A Finite Automaton Model

SHAOZE YANG, <u>SHREYAS BHAT</u>, YUTONG REN, TERRA STROUP, AL SALOUR, PAUL PRIDHAM, X. JESSIE YANG

Motivation

Pedestrian-AV Interaction

- Three broad approaches: Physics-based, pattern-based, and planning-based [1]
- Majority of literature studies intersections with crosswalks [2]
- Such structures are absent in manufacturing plants

Worker-AGV Interaction

- Modeling and designing safe interaction [3]
- Underlying structure to worker motion through manufacturing plants
- Prior literature has not leveraged this structure

VR Environment Design

• We built a Virtual Reality (VR) environment to represent a typical manufacturing plant in which humans and AGVs share space

- The AGVs carry parts around the plant
- The humans move between the workstations

Bird's-eye view plan of the manufacturing plant

Screenshot of the VR environment built in Unreal Engine 5

The number disappears in three seconds

Human Subjects Study

• We designed 16 AGV trajectories to showcase all possible types of interactions between the workers and the AGVs [4]

 Participants interacted with the VR environment using the Meta Quest Pro headset and the Kat Walk C2 omnidirectional treadmill

• We recruited 19 participants (10 male, 9 female, Age = 23.3 ± 3.6 years)

Actual AGV Photo

Our Custom-built AGV

A participant wearing the VR headset and standing on the omnidirectional treadmill

Finite Automaton Model (FAM)

- We designed 6 intuitive states for a worker to be in at any given moment
 - At station
 - Approach sidewalk
 - Wait
 - Cross
 - Move Along Sidewalk
 - Approach Station
- We also defined transitions between these states depending on the features of the worker's trajectory

No overflow

Error Feedback Loop

- There is a tendency for any FAM to get stuck in incorrect states
- To alleviate this problem, we implemented an error feedback loop

- We monitor constraint satisfaction in each state. If enough errors are detected, the FAM goes into a special "error" state
 - The error state can then transition back to any other state based on constraint satisfaction

Methodology: Ground Truth

- 3 coders manually labeled states for 18 worker trajectories to test agreement
 - A total of 834 seconds of data was manually labeled by 3 coders

- The agreement between the coders was computed using Light's Kappa
 - A score of above 0.8 is considered to signify good agreement

- We then evaluated our model's performance on 87 trajectories
 - A total of 3362 seconds of data was manually labeled for this

TABLE III: Inter-Rater Reliability For Rater A, B and C

Rater 1	Rater 2	Kappa Score		
А	В	0.919		
A	C	0.917		
B	С	0.907		

Results

	T 7 T	X T 1 1	a ·	
TABLE	VI:	Model	Compariso	n
		1110401	companio	••

	Model	Accuracy	Precision	Recall	F1 Score
Neural N	Network	0.2362	0.2653	0.2105	0.1915
	SVM	0.3303	0.1486	0.2348	0.1780
	KNN	0.3440	0.3368	0.3497	0.3396
Logistic Reg	gression	0.4656	0.3917	0.4105	0.3825
Decisio	on Tree	0.5872	0.5518	0.5982	0.5600
_	LGBM	0.6583	0.6062	0.5783	0.5634
	Ours	0.8068	0.7029	0.6994	0.6950

Fig. 6: Normalized confusion matrix of model's prediction.

Summary

- We proposed a Finite Automaton Model (FAM) to identify the state of a worker moving through a manufacturing plant
- Our model leverages the underlying structure of worker motion to define intuitive states and state transitions

 Our model achieves 80.7% accuracy on labeling worker states, which is considerably more than learning-based methods with limited data

Limitations and Future Work

- Limited predictive power
- Necessity of hand-crafted states and state transitions
- Human-subjects study dealt with only one worker at a time
- Modifying AGV behavior based on the model outputs

Thank you

SHREYAS BHAT (SHREYASB@UMICH.EDU)

References

- 1. A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras, "Human Motion Trajectory Prediction: A Survey," The International Journal of Robotics Research, vol. 39, no. 8, pp. 895–935, Jul. 2020.
- 2. S. Jayaraman, L. Robert, J. Yang, and D. Tilbury, "Automated Vehicle Behavior Design for Pedestrian Interactions at Unsignalized Crosswalks," SSRN Electronic Journal, 2021.
- 3. A. A. Tubis, H. Poturaj, and A. Smok, "Interaction between a Human and an AGV System in a Shared Workspace—A Literature Review Identifying Research Areas," Sustainability, vol. 16, no. 3, p. 974, Jan. 2024
- 4. S. Molina, A. Mannucci, M. Magnusson, D. Adolfsson, H. Andreasson, M. Hamad, S. Abdolshah, R. T. Chadalavada, L. Palmieri, T. Linder, C. S. Swaminathan, T. P. Kucner, M. Hanheide, M. Fernandez-Carmona, G. Cielniak, T. Duckett, F. Pecora, S. Bokesand, K. O. Arras, S. Haddadin, and A. J. Lilienthal, "The ILIAD Safety Stack: Human-Aware Infrastructure-Free Navigation of Industrial Mobile Robots," IEEE Robotics & Automation Magazine, pp. 2–13, 2023.