
Identifying Worker Motion Through a Manufacturing Plant:
A Finite Automaton Model

Shaoze Yang†, Shreyas Bhat†, Yutong Ren,
Paul Pridham, and X. Jessie Yang∗
†co-first authors ∗corresponding author

Department of Industrial and Operations Engineering
The University of Michigan, Ann Arbor, MI 48109

Email: {shaozey, shreyasb, rentony, pridham, xijyang}@umich.edu

Terra Stroup and Al Salour
The Boeing Company, Arlington, VA, 22202
Email: {terra.a.stroup, al.salour}@boeing.com

Abstract— Autonomous Guided Vehicles (AGVs) are becom-
ing increasingly common in industrial environments to trans-
port heavy equipment around warehouses. Within the idea
of Industry 5.0, these AGVs are expected to work alongside
humans in the same shared workspace. To enable smooth and
trustworthy interaction between workers and AGVs, the AGVs
must be able to model the workers’ behavior and plan their
trajectories around it. In this paper, we introduce a Finite
Automaton Model (FAM) to model worker motion in such
a context. We conduct a human subject experiment using
a Virtual Reality (VR) environment and an omnidirectional
treadmill to collect data about worker trajectories to tune our
model. We show that not only is our model more interpretable,
but also outperforms machine learning models at classifying
worker motion behavior with limited training data. Future
research can use our model to modify AGV behavior to promote
trustworthy human-AGV interaction.

I. INTRODUCTION

Transitioning from Industry 4.0 to Industry 5.0 signifies
a pivotal shift towards a more human-centric approach in
industrial and manufacturing settings. Industry 4.0 intro-
duced us to major technologies such as Smart Factories,
Autonomous Guided Vehicles (AGVs), the Internet of Things
(IoT), highlighting the integration of advanced automation
and data exchange in manufacturing technologies [1]. As
we transition into Industry 5.0, the focus extends beyond
automation to emphasize the synergy between humans and
machines, fostering an environment where humans and ma-
chines collaborate seamlessly [2].

To facilitate smooth and trustworthy interaction between
Autonomous Guided Vehicles (AGVs) and workers within
manufacturing settings, we envision a future where au-
tonomous and robotic agents can predict and adapt to
workers’ behaviors [3], [4]. In this paper, we tackle one
part of the human-AGV interaction problem: How should
the AGV model human motion in manufacturing environ-
ments? While existing research on Pedestrian-Autonomous
Vehicle (AV) interactions modeled pedestrian behaviors at
crosswalks [5], factory settings present unique challenges
due to their more chaotic, unstructured nature absent of clear
pedestrian pathways. In addition, previous studies (e.g., [6],
[7]) on Worker-AGV interactions have not fully leveraged
the structured patterns of human movement within these

environments, where workers frequently navigate between
various workstations. Our model seeks to bridge these gaps
by offering a better understanding of human motion in
factory settings.

We develop a Finite Automaton Model (FAM) with an
intuitive state space to model worker motion in the presence
of AGVs. To evaluate the model, we conduct a human-
subject study with 19 participants in a Virtual Reality (VR)
environment that mirrors a typical manufacturing environ-
ment, where AGVs are responsible for transporting goods,
and workers move toolboxes between stations.

Results show that our model outperforms other approaches
including neural networks, support vector machines, and
other classification models in the presence of limited training
data. Our model also includes an error feedback loop that
allows it to self-correct itself in case of unexpected behavior
from the worker. Future studies could use our model to
perform adaptive behavior modifications for the AGVs to
enable trustworthy interaction between workers and AGVs.

The rest of the paper is organized as follows: Section II
discusses literature in pedestrian-AV interaction and worker-
AGV interaction that motivates our work. Section III pro-
vides details of our Finite Automaton Model including the
states, features, the error feedback loop, and the constraints.
Section IV details the human subject study conducted.
Section V discusses major results from the study. Finally,
Section VI concludes the paper and discusses limitations and
possible directions for future work.

II. RELATED WORK

Our work is related to two major areas of research in
human-robot interaction, namely, pedestrian-AV interaction
and worker-AGV interaction. In this section we discuss
literature that motivates our approach.

A. Pedestrian-AV interaction

Research in pedestrian-AV interaction can be broadly
classified into 3 categories: 1) physics-based approaches [8],
[9], 2) pattern-based approaches [10], [11], and 3) planning-
based approaches [12], [13] (see [14] for a detailed review).
Physics-based approaches simulate the human’s trajectory
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Fig. 1: Classification of walking behavior by our model in a virtual environment. States are differentiated by colors.

based on some known dynamical system of equations.
Pattern-based approaches employ various functions (e.g.
Gaussian Process, Neural Networks, etc.) to learn patterns
from training data and predict human motion in the future.
Planning-based approaches take into account human intent
to form hypotheses on where the human would move next.

Under the planning-based approach, Jayaraman et al. [5],
[15], [16] developed a finite automaton model to model the
behavior of pedestrians near uncontrolled mid-block cross-
walks and intersections. Yannis et al. [17] and Kadali et al.
[18] developed gap acceptance models for predicting whether
or not a pedestrian would cross at a well designated but
uncontrolled crosswalk. The reasoning behind such models
is that the pedestrians will only cross if the lateral distance
between the crosswalk and the AGV is big enough. In our
case, however, such models would not directly apply since
the workers can cross the “road” on which the AGV drives
at any point in their trajectory.

Our work uses a similar approach, but for modeling worker
motion in manufacturing plants. The absence of well defined
crosswalks within the manufacturing plant make this problem
more unstructured in our case.

B. Worker-AGV interaction

Research in worker-AGV interaction typically deals with
modeling and designing safe interaction between workers
and AGVs on a shop floor. Tubis et al. [19] provide a
recent review of literature of this field. They categorize prior
works into 5 different categories: 1) Review articles [20],
[21], 2) Comparison of AGV and human work [22], [23],
3) Human-AGV cooperation [6], [7], 4) Designing a safe
work environment [24], [25], and 5) Others. Within this
categorization, our work falls into Human-AGV cooperation.

When humans and AGVs share the same workspace,
it becomes essential to provide adequate safety for the
human. The current industry standard is to use laser scanners

mounted on the AGVs to detect whether an obstacle enters a
bounding box around the AGV [24]. If an object is detected
within this bounding box, the AGV’s trajectory is modified
to either slow down or stop depending on the distance of
the object from the AGV. The effect of having an adaptive
sizing of this bounding box is analyzed in Muhammad et al.
[24]. Their results indicate that having an adaptive sizing of
the bounding boxes results in a lower number of slowdowns
for the AGV, thus increasing their efficiency.

Bergman et al. [7] provide design recommendations for
AGV behavior to result in positive affect among the workers
sharing the same workspace. They take inspiration from
human social norms and analogies from nature to design two
behaviors for AGVs when approaching a worker in a straight
line. Their results indicate that the AGV following a curved
path rather than coming to a stop results in more legible be-
havior by humans. However, there is no significant difference
between the two behaviors in terms of predictability of the
AGV behavior by humans.

Löcklin et al. [6], [26] consider the problem of trajectory
prediction of moving workers for AGVs on the shop floor.
They compare two methods for trajectory prediction of work-
ers, namely, pattern based prediction via 2D Convolutional
Neural Networks (CNN) and planning-based prediction using
a pathfinding algorithm in conjunction with a semantically-
extended map of the environment. Their results indicate
that pattern-based trajectory prediction is faster but less reli-
able for long-horizon predictions. Planning-based trajectory
prediction is slower, but more accurate for long-horizon
predictions [26].

Prior works, however, have not leveraged the underlying
structure of worker behavior when they are moving around
the plant. Our work utilizes this structure to define intuitive
states in a FAM to model worker behavior as they move
between different work stations in the presence of AGVs
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sharing the same space.

III. FINITE AUTOMATON MODEL

Workers in a manufacturing plant typically move between
various stations. At the same time, AGVs transport heavy
equipment from one location to another in the plant. Thus,
the workers have to plan their trajectories around the tra-
jectories of the AGVs. To allow for smooth and trustworthy
interaction between the workers and the vehicles, it is es-
sential for the vehicle to be able to estimate the worker’s
behavior and plan its own trajectory accordingly.

In this paper, we propose a Finite Automaton Model
(FAM) to predict worker’s behavior, as shown in Algo-
rithm 1. Here we formally define S,X ,F ,C ,M , where:

1) S is the set of states, as detailed in III-A. Spred denotes
model’s prediction.

2) X := [F1,F2, ...Fq] is the feature and is detailed in III-B.
3) F : S × X −→ S is the state transition function, as

detailed in III-A.
4) C : S×X −→ Boolean is the constraint evaluation func-

tion, as detailed in III-D.
5) M is the probability transition function. Ms′(s) returns

the estimated probability from state s′ to state s, as
detailed in III-D.

Algorithm 1 Finite Automaton Model

1: Initialize: Spred ← “Error State”, X
2: Initialize: errorStack with capacity limit
3: while system is operational do
4: if Spred ̸= “Error State” then
5: errorStack.Update(C (Spred ,X)) ▷ Update

replaces the oldest element in stack with new one.
6: if errorStack.IsAllFalse() then
7: Reset MS′ with S′← Spred
8: Spred ← “Error State”
9: errorStack.Clear()

10: else
11: Spred ←F (Spred ,X)
12: end if
13: else
14: Q←{s ∈ S : C (s,X)} ▷ Q is all states which

satisfy the constraints
15: if Q ̸=∅ then
16: Spred ← argmax

s∈Q
MS′(s)

17: errorStack.Clear()
18: end if
19: end if
20: Update X
21: end while

A. States

We chose 6 states to represent typical worker trajectories
while moving between stations: 1) At station, 2) Approach
sidewalk, 3) Wait, 4) Move along sidewalk, 5) Approach
Station and 6) Cross. Fig. 1 shows an ideal classification

of worker’s behavior from our model. We also defined
transitions between these states grounded in the human-
subjects data, as shown in Fig. 2. To avoid cluttering in the
figure, we did not show transitions from states to themselves.
However, it should be noted that each state can make a
transition to itself. State transition criteria can be seen in
Table I. In this table, whether the worker is moving or is
stationary is determined by checking their speed against
a threshold (0.3 m/s), whether the worker is looking at
something is determined by whether their gaze direction is
within a 40◦ cone of that object.

Fig. 2: Normal Operational Loop of Finite Automaton Model

B. Features

The features utilized, denoted as X , are detailed in Table
II. Data were collected directly from the virtual environment
(see Sec. IV), including the positions of the AGV and
the worker, along with the 3-D orientation of the worker’s
head. It is presumed that the model possesses comprehensive
knowledge regarding the locations of stations and sidewalks,
as well as the objects the worker is looking at.

C. Error Feedback Loop

A significant limitation of the Finite Automaton Model
(FAM) design is its vulnerability to prediction errors that
can cause the system to become stuck. For instance, should
the system erroneously identify a worker’s state as being
in the “Approach Station State” when they are actually
in the “Cross State”, the FAM is constrained to follow a
predefined sequence of states—Approach Station, At Station,
and then Cross—before it can align with the correct state.
This rigid sequence increases the likelihood of the system
remaining in an incorrect state. To address this issue, we have
implemented an error feedback loop mechanism to enhance
the system’s ability to correct itself and return to its normal
operational loop. As shown in Fig. 3, an additional “Error
State” has been integrated alongside the original FAM model.

This setup involves a continuous monitoring process, eval-
uates if worker’s status satisfy the constraint of the currently
predicted state and maintains a record of the most recent
results in a first-in-first-out error stack, which stores a series
of Boolean values. Should this error stack contain exclusively
error values, indicating persistent prediction inaccuracies,
the system transitions into the “Error State.” It remains in
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TABLE I: State Transition Conditions and Empirically Observed Probabilities.
Note: The transition probabilities do not sum to 1 as we have not included the self-transition probabilities

From state To state Condition Probability

At Station Approach Sidewalk Worker is moving and is either near the sidewalk or facing the sidewalk 0.024
At Station Wait Worker is stationary and looking at the AGV 0.022
At Station Move Along Sidewalk (Observed but not in FAM) 0.005
Approach Sidewalk Wait Worker is stationary and looking at the AGV 0.087
Approach Sidewalk Cross Worker is moving on the road 0.262
Approach Sidewalk Move Along Sidewalk Worker is moving along the sidewalk 0.087
Wait Cross Worker is moving on the road and is facing the road 0.041
Wait Move Along Sidewalk Worker is moving along the sidewalk 0.0075
Wait Approach Sidewalk Worker is moving and is facing towards the sidewalk 0.127
Cross Approach Station Worker is moving and looking at the closest station 0.131
Cross Wait (Observed but not in FAM) 0.015
Cross Move Along Sidewalk Worker is moving along the sidewalk 0.003
Move Along Sidewalk Wait Worker is stationary and looking at the AGV 0.0075
Move Along Sidewalk Approach Station Worker is looking at the closest station and is near that station 0.065
Move Along Sidewalk Cross Worker is moving on the road 0.003
Move Along Sidewalk Approach Sidewalk (Observed but not in FAM) 0.005
Approach Station At Station Worker is stationary near a station and facing away from the road 0.253
Approach Station Move Along Sidewalk (Observed but not in FAM) 0.0046

TABLE II: Input Features for Finite Automaton Model

Parameter Description

AGV pos, W pos Position of AGV and worker
GazeDirection 3-D direction of worker’s gaze
AGV speed, W speed Speed of AGV and worker
OnRoad / OnSidewalks Boolean classifies worker’s position
FacingRoad (alongSW) Boolean classifies worker’s gaze direction
ClosestStationDis Distance to the closest station near worker
FacingClosestStation If worker is looking at the closest station
GazeRatio Worker’s attention on AGV in previous second
IntentToCross Boolean based on worker’s acceleration and Gaze ratio
PossibleInteraction Possible Interaction in 10s if velocity unchanged

this state until some constraint in the set of all constraints
in the model is satisfied, at which point the error stack
is cleared, and the system resumes its normal operational
loop in the state corresponding to the constraint that was
satisfied. Consider the arbitrariness of worker’s behaviors,
the constraints are designed to be slack to avoid frequently
entering the “Error State”. At the initial detection of a worker,
we set the model to the “Error State” to avoid restriction
from any predefined transition sequence. The effectiveness
validation and parameter selection, Section IV-D.2, further
validates the effectiveness of this loop.

Fig. 3: Error Feedback Loop

D. Constraints

The constraints C are series of checker functions that
evaluate if current worker’s status against the model’s predic-
tions. The constraints used in our model are not necessarily
mutually exclusive. The constraints can, therefore, be more
relaxed, making the model more robust to noise in the
recorded data. This, however, means a worker’s status could
simultaneously satisfy the criteria for more than one state.
Consequently, when the model is in the “Error State” and
attempts to return to the standard operational loop, the
sequence in which the constraints are checked can influence
the determination of the next state, introducing a degree of
uncertainty. To mitigate the impact of this uncertainty, we
have incorporated an N-Grams model [27] to forecast the
subsequent state based on the state preceding the transition
into the “Error State”. Our model has m unique states
S1, ...Sm and S denotes the set of states Given a labeled
sequence L1, ...,LN (denoted by L1:N), where Li ∈ S for
i ≤ N. Adapting the Markov Assumption for simplification,
the probability of sequence can be expressed as:

P(L1L2...LN)=P(L1)
N

∏
k=2

P(Lk|L1:k−1)≈P(L1)
N

∏
k=2

P(Lk|Lk−1)

(1)
subject to the constraint

m

∑
i=1

P[(LN = Si)|LN−1] = 1, ∀LN−1 ∈ S (2)

We can then estimate the bi-gram probabilities P(Si|S j)
using maximum likelihood estimation

P(Si|S j) =
CL(S jSi)

∑
m
k=1 CL(S jSk)

, ∀i, j ∈ {1, · · · ,m} (3)

where CL(S jSi) is the count of sub-sequence S jSi in the
labeled sequence. ∑

n
k=1 CL(S jSk) is the count of all sub-

sequences that start with S j.
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Therefore, to return from the error state, if the worker’s
status satisfies the constraints of both Si and S j, we can
compare between P[Si|S′] and P[S j|S′] where S′ is the last
state before the “Error State”, to determine the next state. The
estimated transition probabilities from out labeled dataset are
detailed in Table I. To address the issue of not having any
prior state at the first timestep, we check the constraints in a
pre-determined order based on the descending level of danger
of that state, presented below:

DCross>DWait>DMove Along Sidewalk>DApproach Sidewalk>DAt Station

IV. EXPERIMENTS

A. Testbed

We modeled a VR manufacturing plant environment in
Unreal Engine 5.1.1. Participants used the Meta Quest Pro
headset with the controllers to interact with the testbed.
Additionally, the participants could walk around in the envi-
ronment using the KAT Walk C2 omnidirectional treadmill.
A screenshot of the AGV within the VR environment and
the equipment can be seen in Fig. 4

(a) Apparatus (b) AGV

Fig. 4: a) A researcher in the omnidirectional treadmill
wearing the headset and controllers. b) A screenshot of the
AGV in the VR environment.

There are multiple workstations in the testbed between
which the participants could move. At the same time, an
AGV carried large components around the plant. The testbed
records the participant’s location, their gaze vector, and the
AGV’s location at 72 Hz. For our analysis, we downsampled
by averaging the data over one second.

B. Human Subject Study

We designed two conditions for the AGVs: slowing down
when near the workers and not slowing down when near the
workers. All AGVs would stop when a person was within
a prescribed distance. Although not the focus of this study,
the two conditions represent distinct vehicle behaviors with
which workers could interact, and thus increase the general-
izability of our results. We designed a within-subjects study;
each participant completed 16 toolbox delivery tasks for
each AGV behavior. We collected data from 19 participants
(10 Male, 9 Female, Age = 23.3± 3.6 years), adding up
to 24252 seconds. All participants were students from the

University of Michigan. This study was regulated by the
Institutional Review Board at the University of Michigan,
study ID HUM00233665.

The study procedure was as follows: The participants
signed an informed consent form. Then, the experimenter
helped the participants into the equipment (wearing the
footwear for the treadmill, getting on to the treadmill, and
wearing the headset and controllers). After that the partic-
ipants completed a training session that helped familiarize
them with walking on the treadmill, viewing the environment
through the headset, and using the controllers to interact
with objects in the environment. Then, they performed two
trials, one with the slowdown condition of the AGV and
another with the no-slowdown condition of the AGV. The
order of presentation of the condition was randomized to
counter any learning effects. In the slowdown condition, the
AGV reduced its speed in proximity to the participants. In
the no-slowdown condition, the AGV did not slow down
even when near the participants. In both conditions, however,
the AGV came to a complete stop if the participant got too
close (to prevent a collision). Each trial consisted of taking
a toolbox from one station to another while remembering a
3-digit code representing the target location of the toolbox
at the next station. Each participant completed 16 trials for
each condition, taking approximately 25 minutes in total.
The AGV paths in the 16 trials were designed to have
variations of all 6 types of interactions [28] between workers
and AGVs. After each trial, the participants were asked to
answer questions to gauge their level of trust and comfort
while sharing the workspace with the AGV. Each question
was rated on a discrete scale from 1 to 10. Analysis of these
surveys is not within the scope of this paper, which focuses
on identifying worker motion.

C. Inter-Rater Reliability

For the dataset, participant behavior was manually clas-
sified into states by three independent raters. We curated
a dataset comprising 9 anticipated and 9 unanticipated in-
stances of worker behavior, totaling 834 seconds, to calibrate
the model’s parameters and estimate the state transition
probabilities (see Table I). Subsequently, we evaluated the
model’s performance on a test set encompassing 87 cases,
totaling 3362 seconds.

Following Hallgren’s methodology [29], we employed
Light’s Kappa to compute the average kappa coefficient
across all pairs of raters, resulting in a value of 0.914. In
general, a value of above 0.8 is considered to be indicative
of good agreement between the raters. The pairwise Kappa
Scores are detailed in Table III.

TABLE III: Inter-Rater Reliability For Rater A, B and C

Rater 1 Rater 2 Kappa Score

A B 0.919
A C 0.917
B C 0.907
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D. Effectiveness Validation and Parameter Selection

To assess our method’s efficacy, we performed several
experiments, evaluating feature importance, as well as the
effectiveness of the error feedback loop and probability
estimation.

1) Feature Importance: In this analysis, we sequentially
omitted each feature (set all values to 0), excluding raw fea-
tures listed in Table II, to evaluate their impact on the FAM’s
performance. The significance of each parameter, based on
its influence on the FAM’s effectiveness, is summarized in
Table IV. The features are ranked in ascending order of their
importance, with the IntentToCross feature exerting the least
influence on model performance.

TABLE IV: FAM Feature Importance Ranking

Feature Omitted Accuracy Precision Recall F1 Score

N.A. (Total Model) 0.8068 0.7030 0.6994 0.6950
IntentToCross 0.7856 0.6885 0.6784 0.6735

PossibleInteraction 0.7715 0.6915 0.6649 0.6609
FacingRoad(alongSW) 0.7668 0.7068 0.6469 0.6683

GazeRatio 0.7668 0.7025 0.6720 0.6784
ClosestStationDis 0.7067 0.5494 0.5606 0.5348

FacingClosestStation 0.6737 0.5806 0.5920 0.5654
OnRoad/Sidewalk 0.4994 0.4460 0.4543 0.4427
AGV-User speed 0.2497 0.0981 0.1790 0.1088

2) Error Feedback Loop: To assess the impact of the
error feedback loop on our model’s performance, we con-
ducted a series of experiments where the model was tested
with varying sizes of the error stack, as shown in Fig. 5.
Model accuracy in total dataset was improved from 0.574 to
0.655 (without probability estimation referred in Sec. III-D),
achieving peak performance with an error stack size of 3.
For the rest of experiments, we kept this size fixed.

To statistically verify the effectiveness, we conducted a
10-fold cross validation test on the training data. Since we
cannot guarantee the data is normally distributed, we applied
the Wilcoxon Signed-Rank Test and the p-value was found
to be 0.0019, meaning the improvement was significant.

Fig. 5: Comparative accuracy of various models with differ-
ent error stack sizes. The red line indicates the benchmark
accuracy achieved by a model operating without error feed-
back loop.

3) Probability Estimation: In alignment with the method-
ology outlined in Section III-D, we incorporated a state tran-
sition probability estimation matrix to address uncertainties.
Experimental results revealed an approximate 15% increase
in the model’s overall accuracy. Similar to Sec. IV-D.2, we
applied the Wilcoxon Signed-Rank Test on an 8-fold cross
validation with 30% data in each sample, resulting in a p-
value of 0.0078.

4) Classification Methods Comparison: To validate the
effectiveness of our methodology, we compared our model’s
results with those from established classifiers available in
scikit-learn [30], including Logistic Regression, Decision
Tree, LightGBM, and Support Vector Machine (SVM). All
these models were trained and tested with the same setup as
mentioned in Sec. IV-C.

V. RESULTS

Our method of participant behavior classification has dis-
played superior performance. We reach the overall accuracy
of 0.807 and the accuracy of different states are shown in
the Table V. The confusion matrix further illustrating our
model’s predictive accuracy is presented in Fig. 6.

TABLE V: Model Performance of Different States

State Accuracy Precision Recall F1 Score

Move Along Sidewalk 0.9722 0.3333 0.9722 0.9859
Cross 0.9016 0.2000 0.9016 0.9483

Approach Target Station 0.8986 0.3333 0.8986 0.9466
Approach Sidewalk 0.7917 0.2000 0.7917 0.8837

At Station 0.7793 0.2500 0.7793 0.8759
Wait 0.7442 0.2000 0.7442 0.8533

Fig. 6: Normalized confusion matrix of model’s prediction.
Dark grid in the diagonal indicates high accuracy across
all classes. The off-diagonal lighter elements indicate fewer
misclassifications between classes.

We compared our model with other classification models
trained on the same extracted features and labeled data
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as described in IV-C. Our model outperformed in over-
all accuracy, Recall macro, and F1-score, as indicated in
Table VI. We also compare model accuracy within each
state, as shown in Fig. 7. While predictions from other
models exhibited high variance across different states, our
FAM model maintained relatively consistent performance.
This consistency was particularly notable in more critical
states such as “Cross State” and “Wait State”, where our
model alone provided stable and reliable predictions. This
underscores the robustness and reliability of our approach
in effectively identifying and classifying worker behaviors
across a spectrum of scenarios, especially in critical safety-
related contexts.

TABLE VI: Model Comparison

Model Accuracy Precision Recall F1 Score

Neural Network 0.2362 0.2653 0.2105 0.1915
SVM 0.3303 0.1486 0.2348 0.1780
KNN 0.3440 0.3368 0.3497 0.3396

Logistic Regression 0.4656 0.3917 0.4105 0.3825
Decision Tree 0.5872 0.5518 0.5982 0.5600

LGBM 0.6583 0.6062 0.5783 0.5634
Ours 0.8068 0.7029 0.6994 0.6950

VI. CONCLUSION
In this paper, we presented a Finite Automaton Model

(FAM) designed to model worker walking behavior in man-
ufacturing environments where AGVs and humans share
workspaces. The FAM not only offers an intuitive interpreta-
tion but also outperforms other classification techniques. The
effectiveness validation and parameter selection evaluations
corroborated the significance of feature engineering, the in-
corporation of an error feedback loop, and the state transition
probability estimation in enhancing model performance. As
a result, the model exhibits good accuracy in identifying
critical and hazardous states, such as “Cross” and “Wait,”
prioritizing safety.

Although our proposed method achieves satisfying results
in predicting worker behaviors, there are still limitations
that need to be addressed. First, our model lacks predictive
power. It only classifies worker behavior into different states
depending on their location, velocity, head pose, etc. Future
studies could look into predicting worker trajectories within
the discrete states of our model and predicting future state
transitions. The application of gap acceptance models [17],
[18] and intent prediction models [5], [26] to a manufacturing
plant setting could be a good direction for future research.
Moreover, the Hidden Markov Model with labeled sequence
[31] could be applied to predict future worker’s behavior.
Second, the constraints in our model are highly dependent
on the layout of the manufacturing plant. The constraints are
highly intuitive and easy to set up given the layout. Another
direction of future work would be to look into modifying
AGV behavior based on the predictions to ensure smooth and
trustworthy worker-AGV interaction. Finally, we currently
assume that the AGV knows the real-time coordinates of the
human worker at all times. This is not typically available

to the AGV. In general, AGVs can detect obstacles using
mounted sensors and can have an idea of the relative position
of that obstacle from itself. Our model can readily be altered
to use this relative position instead of the global coordinates.

Finally, an AGV running our model to determine a
worker’s state can then communicate some information (e.g.
the worker’s state, the AGV’s state, intent, etc.). Future
work could look into best practices for such non-verbal
communication [32]–[34].
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