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Abstract—In this paper, we evaluate two interaction strategies
for a robot in a sequential decision-making task: one which uses
a state-dependent reward function and the other that uses a
state-independent (constant) reward function. Towards this, we
present a study done on Amazon Mechanical Turk to learn the
state-dependent reward function. Using this reward function,
we compare the two strategies in simulation, where we also set
the risk levels actively to induce a difference between the two
strategies. Our results indicate that the interaction strategy using
the state-dependent reward function results in better trust and
team performance compared to that using the state-independent
reward function, especially when more of the state space is
explored. Thus, there may be merit in learning a more fine-
grained reward function for a robot interacting with a human.
The results of this study provide a starting point for a future
human-subjects study.

I. INTRODUCTION

With the advent of AI, humans and smart robots are
increasingly teaming up to perform various tasks. Robots are
starting to be seen more like teammates in a human-robot
team rather than mere tools to be utilized by the human
operator [1]–[3]. As in any team, trust in the robot is very
important to ensure smooth teamwork and good performance
of the team. Towards this, a large area of research has emerged
focusing on developing dynamic models of trust [4]–[6],
predicting human behavior through trust [7], [8], and using
these predictions to modify robot behavior [9], [10].

Researchers have been interested in the idea of value/goal
alignment which deals with aligning the values/goals of robots
with that of their human counterparts [9], [11]–[13]. This is
typically done by modeling the interaction as a reward maxi-
mization process and trying to learn the human’s reward func-
tion through demonstrations or queries about their preferences
about the task at hand. In an earlier work [8], our research
team found that when a robot is starting from an uninformed
prior about the human’s reward function, then learning the
reward function through the human’s behavior is a good way
to increase her trust in the robot. On the other hand, if the
robot already has a good prior on the reward function of the
human, further personalization through reward learning may
not be so important for trust and team performance. This study
tries to extend this prior work by learning a more fine-grained
reward function that depends on the state of the human-robot

team. Through a study conducted using Amazon Mechanical
Turk (MTurk), we show the process of learning this state-
dependence of the human’s reward function. We then present
two robot interaction strategies: one using a constant reward
function set through the informed prior from the earlier study
and the other using this state-dependent reward function and
compare trust and team performance in simulation. We also
provide a brief discussion on how to set the risk level actively
in order to emphasize the differences between the two robot
strategies. Our results indicate that the robot strategy using
the more fine-grained state-dependent reward function results
in a higher trust and team performance regardless of whether
the simulated human uses the constant reward function or the
state-dependent reward function. This study should be seen
as a first step towards a human-subjects experiment designed
to verify the simulation results.

The rest of the paper is organized as follows: Section II
discusses the literature that informs our study, Section III
provides the mathematical model, Section IV provides details
of the MTurk study, Section V sets up the simulation study,
Section VI provides major results from the simulation study,
and finally, Section VII concludes the paper by discussing the
implications of the results and the limitations of our study.

II. RELATED WORK

A. Trust-driven HRI

In recent years, there has been increased research interest
in using trust as a guiding point to predict human behavior.
Such predictions can be utilized by robots interacting with
humans to change their behavior and ensure an appropriate
level of trust. In one of the seminal papers, Xu and Dudek
[14] presented a quantitative model of trust and used it to
improve the performance of an autonomous drone through
an interactive visual navigation system. The authors [15]
then improved upon their model and demonstrated its use
in enabling autonomous robots to actively gain trust. Floyd
et al. [6] presented a framework for a robot to quickly
learn trustworthy behaviors while interacting with humans
by learning their preferences. Chen et al. [10], [16] modeled
the interaction between a human and a robot as a Partially
Observable Markov Decision Process (POMDP) with trust as



the unobservable state. They showed that a robot can show
behaviors that gain human trust by solving this POMDP. Guo
et al. [7], [17] used a reverse psychology human behavior
model and showed that robots using such a model could
intentionally deceive their human partners. Bhat et al. [18]
improved this model by adding a trust-gaining reward term
and showed its effectiveness at keeping the robots from
engaging in deceptive behavior. In later studies [8], [9], the
authors used a bounded rationality disuse model of human
behavior and showed that using this model inherently nudges
the robots away from deceptive behaviors even without the
need for a trust-gaining reward term. Zahedi et al. [19]
provided a computational model for capturing and modulating
trust in iterated human-robot interactions. A robot uses this
model to gain human trust using explicable actions and later
maximize rewards using possibly inexplicable actions once
enough trust has been built. In summary, there have been
significant advances in the use of modeling techniques as
applied to trust evolution in the context of HRI.

B. Value Alignment in HRI

The term “value alignment” has received a lot of attention
among researchers in the field of HRI in the past few years,
especially with the advancements in AI. Arnold et al. [11]
considered whether pure inverse reinforcement learning (IRL)
can lead to true value alignment or whether a more norm-
enforced method is more appropriate for the task. Brown et
al. [12] provided a simple test to check whether the values of
the human and the robot are aligned. Hadfield-Menell et al.
[20] proposed a Cooperative Inverse Reinforcement Learning
(CIRL) framework for modeling and learning human rewards
while working towards a common goal. Fisac et al. [21] and
Malik et al. [22] proposed solutions to the CIRL problem
that result in robot behaviors that actively teach the human
about the task and effectively learn the human’s preferences
about how to complete the task. Further, Li et al. [23] found
that adaptive policies adopted by an agent can not only result
in better team performance in an interdependent Human-
Autonomy Teaming context, but such strategies can achieve
optimal performance faster relative to other strategies (e.g.
static or random). In our earlier work [8], we used Bayesian
IRL [24] to learn human’s reward functions while assuming
that they are independent of the state of the human-robot team.
In this study, we try to extend that work by removing that
assumption and actively learning the state-dependent reward
functions of humans. For practical applications of HRI, this
could be a critical step as goals in an HRI context may evolve
over time.

III. PROBLEM FORMULATION

We consider a dyadic human-robot team in which a human
soldier teams up with an intelligent drone to sequentially
search N sites in a town for potential threats. At each site,
the drone scans and reports a chance of threat being present
inside the site. Additionally, it recommends which action to
choose. The human can select one of two actions: breach the

site directly or use a robotic armored rescue vehicle (RARV)
for protection from threats. Breaching a site directly is faster
but risky; the soldier can get harmed if a threat is encountered
in this case. Using the RARV is time consuming since it takes
time to deploy it, but it is risk-free since it will protect the
soldier from harm in case any threat is present inside the site.
We operationalize the harm and time consumption as points
that get deducted from the team’s score. The soldier starts
with a health level H and a time level C. Each time a threat
is encountered without protection, the soldier loses h points
of health. Each time the RARV is deployed, the soldier loses
c points of time.

The interaction between the human and the drone is mod-
eled as a trust-aware Markov Decision Process (MDP) [18]
consisting of states, actions, rewards, transition function, and
a human behavior model.

A. States

The trust of the human t, the remaining health points H,
and the remaining time points C as the states for the MDP.

B. Actions

The two actions available to the human are USE or NOT
USE the RARV, operationalized as 1 and 0 respectively.

C. Reward function

We consider the reward function as a negative convex
combination of the cost for losing health and the cost for
losing time. In particular,

R(H,C,a,D) =−w(H,C)H (a,D)− (1−w(H,C))C (a).
(1)

Here, w(H,C) is the reward weight associated with the cost of
losing health, H (a,D) is the cost for losing health, C (a) is
the cost for losing time, a is the action selected by the human,
and D is a binary variable indicating the presence of threat.
In particular, the functions H (a,D) and C (a) are given by:

H (a,D) = hD(1−a), (2)
C (a) = ca, (3)

where h is the cost for losing health and c is the cost for
losing time. For our study, we set h = c = 10.

D. Transition function

We use the beta distribution trust model [4] with the
reward-based performance metric [18] as the transition func-
tion for trust. Specifically, trust is modeled as a beta dis-
tributed random variable with parameters α and β which are
updated based on positive and negative experiences with the
recommendations.

ti ∼ Beta(αi,βi) where (4)
αi = αi−1 + pivs, (5)

βi = βi−1 +(1− pi)v f . (6)



Here (α0,β0,vs,v f ) are the trust parameters associated with
an individual, pi is the reward-based binary performance of
the recommendation at the ith search site. Mathematically,

pi =

{
1, if R(t,H,C,ar

i ,D)≥ R(t,H,C,1−ar
i ,D),

0, otherwise.
(7)

Here, R is the reward function (Eq. 1), ar
i is the recommended

action at the ith search site.
We update the health and time according to the rules

mentioned above. The soldier loses health when encountering
a threat without protection from the RARV. The soldier loses
time for using the RARV.

Hi+1 =

{
Hi −h, if ah

i = 0 and Di = 1,
Hi, otherwise.

(8)

Ci+1 =

{
Ci − c, if ah

i = 0,
Ci, otherwise.

(9)

Here, i is the site index, Hi and Ci are the health and time
points remaining before the ith interaction, ah

i is the action
chosen by the human at the ith site, and Di is a binary variable
indicating the presence of threat at the ith site.

E. Human behavior model

We use the Bounded Rationality Disuse Model of human
behavior when interacting with recommender systems [8]. It
states that the human chooses the recommended action with
the probability equal to their level of trust on the recom-
mendation system. With the remaining probability, the human
chooses an action using the bounded rationality model, which
means choosing an action with a probability proportional to
the exponential of the expected reward associated with that
action. Overall, for our case, the probabilities are:

P(ah
i = a|ar

i = a) = ti +(1− ti)pa
i , (10)

P(ah
i = 1−a|ar

i = a) = (1− ti)(1− pa
i ). (11)

Here, ah
i is the action selected by the human, ar

i is the action
recommended by the robot, and ti is the human’s level of trust
on the recommender at the ith search site and pa

i is defined
as:

pa
i ∝ exp(κE[R(ti,Hi,Ci,a,Di)]) , (12)

where κ is the “rationality coefficient” of the human. Its
value controls the level of randomness in the human’s action
choices: a higher value results in less randomness (more
rationality) while a lower value results in more randomness.
The robot solves the MDP using finite-horizon value iteration
to generate its optimal recommendation.

IV. MTURK STUDY

This section describes the first phase of our overall study -
data collection for learning the state dependence of reward
weights. We used Amazon Mechanical Turk (MTurk) for
collecting data. Our main insight was that assuming the
bounded-rationality model of human behavior, we can find

the tipping point of the threat level at which a majority of the
population will change their choice of action from risk-taking
to risk-averse. This threat level (d∗) can then be converted to
the health reward weight using the equation below:

d∗ =
(1−w)c

wh
. (13)

For the derivation of the equation, we refer readers to Bhat
et al. [9]. In essence, it is the threat level at which the one-
step expected reward for losing health is the same as that
for losing time. Therefore, the probability of choosing either
action is 0.5.

So, the idea is to collect action-choice data for a set of
states of (H,C) for a series of threat levels. We can then train
a logistic regression model to find d∗ and thus w(H,C) from
Eq. 1. Fig. 1 shows an example of such a query.

Fig. 1: A sample query asked to an MTurk worker. The worker
was shown this information and asked whether s/he would
choose to use the RARV or not.
A. Data Collection

We selected 6 health states, 6 time states, and 11 threat lev-
els giving a total of 396 queries to be asked to MTurk workers.
We randomly divided the queries into 12 separate surveys
consisting of 33 queries each to ensure that each survey takes
a reasonable amount of time to complete. Participants first
provided informed consent at the beginning of the survey
process, followed by watching an instructional video to learn
the task, the two actions, and their consequences. At the end of
the instructional video, participants were asked to choose the
correct full form of RARV, failing which the participants were
prohibited from continuing the survey. Those who correctly
answered this question moved to the main part of the survey.
Three attention-check questions were embedded in the survey
to ensure data quality.

The study was approved by the Institutional Review Board
at the University of Michigan (ID HUM00249731). All
surveys were administered using Qualtrics. Each of the 12
surveys was completed by at least 10 MTurk workers. In total,
we obtained 4092 query responses from 124 workers.

B. Data Cleaning

We realized that the data collected from MTurk workers
was filled with sub-optimal action choices, possibly due to
them not understanding the task, or not paying enough atten-
tion (although all the workers did pass the basic attentional
check questions). To clean the data, we decided to remove the
data from workers who had chosen some “obviously” sub-
optimal action choices. These include two cases: (1) Using
the RARV when the threat level is 0% and (2) Not using the



RARV when threat level is 100%, health is 10 and time is
greater than 10. The first case is sub-optimal since the other
action will definitely lead to the no health loss, no time loss
outcome, while using the RARV will result in an unnecessary
time loss. The second case is sub-optimal because if the
RARV is not used in this case, the soldier’s health level will
drop to 0, ending the mission.

We identified the MTurk IDs of the workers corresponding
to these sub-optimal cases and removed the corresponding
data. This resulted in the removal of data from 83∪10 = 85
workers. Thus, our final dataset consisted of responses from
39 workers, corresponding to 1287 query responses.

C. Data Analysis

A logistic regression was trained using threat level as the
predictor and the action choice as the target for each state
(h,c) in the query set of the cleaned data. A sample logistic
curve is shown in Fig. 2. The point at which the logistic curve
reaches a value of 0.5 corresponds to d∗ from Eq. 13. Thus,
we get the raw reward weights for losing health w(H,C) as
a function of health remaining and time remaining at each of
the queried states. This is shown as a heatmap in Fig. 3a.
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Fig. 2: Sample logistic curve learned from the collected data
In order to get a smooth function for the health reward

weight, we used the forward selection method of model
selection using the Akaike Information Criterion (AIC).
To do this, we incrementally added features from the set
{H,C,H2,C2,HC} to logistic regression models, computed
the AIC, and stopped when the AIC increased. This gave us
a logistic regression model with {H,C} as the features. The
final resulting model is given by,

w(H,C) =
1

1+ exp(0.26H −0.17C−0.79)
. (14)

A heatmap generated using this model is shown in Fig. 3b.
Here, the reward weight increases with increasing value of
time remaining and decreasing value of health remaining.

V. SIMULATION STUDY

We simulate interactions with two robot strategies: one
using a constant reward weight of 0.81 and the other using
the state-dependent reward weights 14. The value of 0.81 was
chosen from an earlier study [8] that found that using this
reward weight would result in similar trust to the case when
the robot is actively learning reward weights. In this study we
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Fig. 3: Heatmaps showing (a) raw data of learned health
reward weights at each queried state and (b) the smoothed
function for the state dependence of reward weights

want to see if that is the case when we explore more of the
state space.

A. Simulating the human

Our simulated human sampled trust parameters taken from
a dataset collected in an earlier study [18]. The simulated
human thus maintained and updated her trust using the trust
dynamics model (Eq. 4). After receiving a recommendation
from the robot, the simulated human chooses an action using
Eq. 10. We use κ = 0.2 throughout the simulation. The
simulated human is assumed to be using the state-dependent
reward function (Eq. 14). After observing the outcome of
the action selection, the simulated human updates her trust
parameters and reports the level of trust by sampling from
the corresponding beta distribution.

The robot learns the trust parameters of each human using
Maximum Likelihood Estimation (MLE) [8].

B. Setting threats and threat levels

We used the following strategy for setting the threats
and threat levels. In general, the prior probability of threat
presence was set to 0.7 meaning that there would be threats in
7/10 search sites on average. This was to ensure that aligning
the values of the robot with the human will be beneficial for
trust, which is only important under high-risk scenarios [9].
Then, with 50% chance at any site independently, the threat
was set randomly using a Bernoulli sample with this prior
probability. To set the threat level after scanning the site by
the drone, we sampled a beta distribution with a peak at 0.9
in case a threat is present and with a peak at 0.1 if a threat
is not present.

With the remaining 50% chance, the threat and threat
level were chosen intelligently to induce a difference in
recommendations from the two robot strategies. As can be
seen from Fig. 2, the value d∗ is like a threshold threat level
below which the action 0 is more likely and above which the
action 1 is more likely. A similar behavior is also seen for
recommendations [9]. We compute d∗ for the constant reward
weight and the state-dependent reward weight and set the
threat level to be uniformly sampled between the two values.
The threat is then sampled with a Bernoulli distribution with
this threat level as the parameter. In this way, we make it
more likely for the two recommendations to differ.



VI. RESULTS

We ran 100 independent simulations for 9 starting condi-
tions of health and time selected from the set {100,70,40}.
The results presented below are an average of all simulation
runs. For each simulation run, the human-robot team sequen-
tially searched through 10 search sites. In all line plots in this
section, the 95% confidence interval is also plotted.

A. States Visited

Fig. 4 illustrates the frequency of visits to each state
during the simulation runs. Brighter colors represent states
visited more frequently, while darker colors represent those
visited less often. As shown, the robot strategy with constant
reward weights produces more horizontally oriented patterns
of brighter colors (Fig. 4b). This pattern suggests that health
remains relatively stable throughout the interaction, reflecting
a more conservative approach by the team.

In contrast, the robot strategy with state-dependent rewards
leads to a broader exploration of the state space, with a greater
number of states shown in brighter colors 4a). This pattern
indicates that the team is more willing to take risks, potentially
sacrificing some health to save time.

(a) State dependent rewards (b) Constant rewards

Fig. 4: Counts of states visited for the two robot strategies

B. Trust Dynamics

Fig. 5 compares the trust reported by the simulated human
for the two interaction strategies. It is clear that the state-
dependent strategy of the robot results in higher trust.

Fig. 5: Comparison of trust reported by the simulated human
for the two robot strategies. Here, trust ranges from 0 to 1.

C. Performance

Fig. 6 compares the performance of the team for the two
robot strategies. Performance is measured as the sum of the
health points and the time points at each stage of the mission.

As is evident from the graph, the state-dependent strategy
performs better than the constant strategy for the robot.

Fig. 6: Comparison of the performance of the team, as
measured by the sum of the health points and the time points

Fig 7 splits out the performance into its components. As
can be seen, the constant strategy prefers to save health, only
losing about 10 points on average throughout the mission,
while losing a lot of time. The state-dependent strategy,
however, loses around 20 points of health to save time.

It should be noted that the results will remain the same as
long as the human’s reward weights for losing health satisfies
w > 0.5, which is the case for the state-dependent reward
function and the constant reward function. This is because the
performance metric will be the same as long as this condition
is satisfied. Therefore, even if the simulated human was using
the constant reward function, the results still hold.

Fig. 7: Comparison of the health and time points across the
interaction for the two robot strategies

VII. CONCLUSION

In this paper, we compared two interaction strategies for
a robot working with a human teammate in a sequential
decision-making task: one using a state-dependent reward
function and the other using a state-independent (constant)
reward function. Our simulation results indicate that the
strategy using the state-dependent reward function results
in higher reported trust and team performance compared to
that using constant rewards. These improvements indicate
the benefits of learning more fine-grained reward functions
when interacting with humans. These results give us a starting
point for a human-subjects study to verify whether the results
translate to real-life.



We conducted a human-subjects study on Amazon Mechan-
ical Turk to learn the state-dependence of the reward func-
tion. The learned reward function showed expected behavior:
willing to take risks when the health is high and the time
remaining is low and becoming more risk averse as the health
decreases and the time remaining increases.

It will be interesting to see if humans feel more trust
towards a robot that may recommend riskier actions in order
to save time or if they prefer a more conservative approach
with the robot using the constant rewards strategy. Another
interesting thing to look into is the perceived performance of
the team when interacting with the two robot strategies. In an
earlier work [8], we found that some robot strategies lead to a
higher perceived performance even though there was not any
significant difference in objective performance of the team.

The results of this study should be viewed considering
the following limitations. Firstly, using simulated humans
means that their reward functions exactly match that of the
robot. In reality, there could be individual differences in the
reward functions of each human that the robot interacts with.
Thus, the results on trust and performance could change from
person-to-person. This limitation, in turn, leads to a possible
direction for future research: personalization of the reward
weights (Eq. 14) model during interaction, By doing so, there
is potential to see improvements in trust and performance for
all individuals that interact with such a “adaptive” robot. Sec-
ondly, although we sample trust parameters for the simulated
human from an existing dataset, it still does not cover all
possibilities. This could be addressed through a future human-
subjects study.
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