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Introduction
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Trust is a key factor to 
facilitate effective 
collaboration [1]

• However, most prior research fixes a reward function 
for the human and the robot that is known to the team

Trust has been used to drive 
the decision-making of 
robots in human-robot 

teams [2, 3]

• This is done by learning reward functions for the 
human through their behavior

• The effect of the degree of value alignment on trust is 
an unexplored area of research

Value alignment [4, 5] refers 
to the field of study trying 

to match the “values” of the 
robot to that of the human
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Problem Formulation
•We focus on tasks in which the robot acts an action 
recommender to the human
• The human’s chosen action is then implemented

•We model the interaction as a Trust-aware Markov 
Decision Process
• States – Trust of the human on the robot

• Actions – Actions that can be recommended by the robot

• Transition function – Trust dynamics model

• Reward function – Rewards associated with outcomes observed by 
choosing actions

• Human behavior model – Probability of the human choosing a 
certain action given the recommended action and the state
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Recommends Action Implements Action



Human Behavior Model
•Gives the probability of the human choosing an action, given

• The current state

• Recommended action

•We combine aspects of two popular models
• Reverse psychology model [6]

• Bounded rationality model [5]
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Human Behavior Model
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Reverse Psychology Model [6] Bounded Rationality Model [5]



Human Behavior Model
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Bounded Rationality Model [5]

Bounded Rationality Disuse Model



Reward Learning
•We assume that the reward function is a weighted sum of task-specific features

•We maintain belief distributions              on the reward weights       and update them using 
Bayes’ rule on the human behavior model [7]

•Note that we need an initial distribution on the reward weights              to start the process. 
The two human subject studies presented here differ in this initial distribution 
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Human-Subject Studies
•We designed a reconnaissance mission scenario for our 
human-subject studies

•Human-robot team searches through a town for 
potential threats (armed gunmen)

•The robot recommends whether 
• the human should breach the site directly 

• or they should deploy an armored robot for protection
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Human-Subject Studies - Conditions
•We design three interaction strategies for the robot
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Assumes that the human shares the robot’s reward functionNon-learner:

Learns personalized reward functions for each human. It only 
uses these for performance estimation and behavior 
prediction. It still optimizes its original reward function

Non-adaptive-learner:

Learns personalized reward functions for each human and 
adopts it as its ownAdaptive-learner:



Human-Subject Studies - Details
STUDY 1 – INFORMED PRIOR

• The robot starts its learning algorithm from an 
informed prior on the reward weights

• 30 participants

• Under this condition, there was not much 
room for adaptation, leading to minimal 
differences in the three interaction strategies

STUDY 2 – UNIFORM PRIOR

• The robot starts its learning algorithm from a 
uniform prior on the reward weights

• 24 participants

• Under this condition, there was room for 
adaptation, leading to better performance of 
the adaptive-learner strategy
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In both studies, the non-adaptive-learner and the non-learner 
strategies use the mean of this prior as the weights for the robot’s 

reward function



Results – Subjective Trust
STUDY 1 – INFORMED PRIOR STUDY 2 – UNIFORM PRIOR
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•No significant difference between the three 
strategies

•Adaptive strategy rated the highest in trust



Results – Behavioral Trust
STUDY 1 – INFORMED PRIOR STUDY 2 – UNIFORM PRIOR
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•No significant difference between the three 
strategies

•Adaptive strategy had the most 
agreements with the participants



Results – Team Performance
STUDY 1 – INFORMED PRIOR STUDY 2 – UNIFORM PRIOR
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•No significant difference between the three 
strategies

•No significant difference between the 
three strategies



Results – Workload
STUDY 1 – INFORMED PRIOR STUDY 2 – UNIFORM PRIOR
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•No significant difference between the three 
strategies

•Adaptive strategy associated with lowest 
frustration and highest perceived 
performance



Conclusion
•We present three interaction strategies for a robot in a human-robot team

•We identified conditions where personalized value alignment is beneficial for the team

•Under such conditions, our adaptive-learner strategy results in
• High trust (subjective and behavioral)

• Low workload

• High perceived performance

• Low frustration
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Thank You. Questions?
SHREYAS BHAT
(shreyasb@umich.edu)
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