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ABSTRACT 
This paper examines the efect of real-time, personalized align-
ment of a robot’s reward function to the human’s values on trust 
and team performance. We present and compare three distinct ro-
bot interaction strategies: a non-learner strategy where the robot 
presumes the human’s reward function mirrors its own; a non-
adaptive-learner strategy in which the robot learns the human’s 
reward function for trust estimation and human behavior modeling, 
but still optimizes its own reward function; and an adaptive-learner 
strategy in which the robot learns the human’s reward function 
and adopts it as its own. Two human-subject experiments with a 
total number of � = 54 participants were conducted. In both ex-
periments, the human-robot team searches for potential threats in 
a town. The team sequentially goes through search sites to look for 
threats. We model the interaction between the human and the robot 
as a trust-aware Markov Decision Process (trust-aware MDP) and 
use Bayesian Inverse Reinforcement Learning (IRL) to estimate the 
reward weights of the human as they interact with the robot. In Ex-
periment 1, we start our learning algorithm with an informed prior 
of the human’s values/goals. In Experiment 2, we start the learning 
algorithm with an uninformed prior. Results indicate that when 
starting with a good informed prior, personalized value alignment 
does not seem to beneft trust or team performance. On the other 
hand, when an informed prior is unavailable, alignment to the hu-
man’s values leads to high trust and higher perceived performance 
while maintaining the same objective team performance. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI; • 
Computer systems organization → Robotic autonomy. 
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1 INTRODUCTION 
Robots are increasingly becoming an integral part of our daily lives, 
marking their presence across varied domains, including health-
care, manufacturing, education, and home assistance, to name a 
few. As this integration deepens, robots are no longer perceived as 
tools performing isolated tasks; they are evolving as collaborative 
partners working with humans. In this human-robot partnership, 
research into trust between humans and robots becomes increas-
ingly important [6, 10, 35, 42]. Without proper trust, the potential 
of human-robot teams remains unrealized. 

A considerable amount of research has been devoted to develop-
ing robots exhibiting trustworthy behaviors, as well as investigating 
methods for predicting and managing the human’s trust in the ro-
bot. For instance, one specifc area of research focuses on providing 
explanations of the robots’ behaviors [14, 28, 29, 37, 38] typically 
leading to higher perceived trustworthiness and, subsequently, trust 
in the robot. Other research directions include the developing real-
time trust prediction algorithms [18, 19, 36, 39, 41], modeling trust 
dynamics [12, 40, 41], developing trust repair strategies [15, 22], 
and developing trust-aware planning [2, 5, 8, 9, 33, 44]. 

More recently, the idea of value/goal alignment – aligning the val-
ues/goals of robots with those of humans, has garnered signifcant 
attention, with the assumption that such alignment would beneft 
human-robot interaction [34, 43]. Recent literature in value/goal 
alignment is primarily focused on enabling the autonomous or 
robotic agent to learn the human’s values/goals through prefer-
ences [7, 11, 20] or demonstrations [3, 16, 20]. However, there is a 
lack of research empirically examining and quantifying the efects 
of alignment on human-robot interaction processes and outcomes. 
Yet, there are at least three reasons to suggest that such alignment 
could be benefcial. First, prior research has illustrated that agent 
adaptation to humans can enhance performance [4, 26]. Second, 
agent adaptation could be viewed as the agent being responsive 
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to the human and may, in turn, increase human trust in the agent 
and enhance team performance [25]. Third, value alignment not 
only could facilitate trust establishment and enhance team perfor-
mance, but it is also important for ensuring that machine partners 
are morally acceptable [24]. 

This study investigates the efect of real-time, personalized align-
ment of a robot’s reward function to the human’s values on trust 
and human-robot team performance through two human-subject 
studies. We model the interaction between the human and the ro-
bot as a trust-aware Markov Decision Process (trust-aware MDP) 
and use Bayesian Inverse Reinforcement Learning to estimate the 
reward weights of the human as they interact with the robot. We 
compare three types of robot interaction strategies: (1) the non-
learner strategy, where the robot presumes the human’s reward 
function mirrors its own; (2) a non-adaptive-learner strategy, in 
which the robot learns the human’s reward function for trust esti-
mation and human behavior modeling, but still optimizes its own 
reward function; and (3) an adaptive-learner strategy where the 
robot learns the human’s reward function and aligns to it. In ad-
dition, we employ diferent initial conditions for the IRL learning 
algorithm in the two experiments, one with an informed prior and 
the other with an uninformed prior. 

Results indicate that when starting with an informed prior, per-
sonalized alignment to values does not seem to beneft trust or 
team performance. On the other hand, when an informed prior is 
unavailable, aligning to the human’s values leads to higher trust, 
agreement, and reliance intentions while maintaining the same 
objective team performance. To the best of our knowledge, this 
is one of the few studies, if not the only, that provides empirical 
evidence for the benefts of value alignment. 

The rest of the paper is organized as follows: Section 2 gives 
an overview of related work that our study builds upon. Section 3 
details the human-robot team task and formulates our problem as 
a trust-aware Markov Decision Process (trust-aware MDP). Section 
4 details the human-subjects experiment. Section 5 discusses major 
results and their implications. Finally, section 6 concludes our study 
and discusses limitations and future work. 

2 RELATED WORK 
Our study is motivated by two bodies of research. The frst is using 
Inverse Reinforcement Learning (IRL) [32] to learn from human 
demonstrations and/or preferences to guide the robot’s behavior. 
The second deals with trust-aware planning and quantitative mod-
eling of trust, the goal of which is to estimate the human’s trust 
level during interaction and to use the estimated value of trust to 
plan behaviors for the robot. 

2.1 Value Alignment 
Over the past few years, the problem of aligning the values/goals 
of the robot to those of its human teammate has been studied in 
detail in human-robot teaming literature [16, 20, 30, 43]. 

A bidirectional value alignment problem is studied by Yuan et al. 
[43]. In their study, the human knows the true reward function and 
behaves accordingly while interacting as a supervisor to a group 
of worker robots. The robots try to learn this true reward func-
tion through correctional inputs to their behavior from the human. 

The human, on the other hand, tries to update her belief on the 
robot’s belief of the true reward function and inputs corrections to 
their behavior accordingly. They compare the degree of alignment 
of human estimates of the robot’s value function and the degree 
of alignment of the robot’s value function to the true value func-
tion. Their results reveal evidence of a bidirectional value learning 
behavior from the human and the robot. 

Hadfeld-Menell et al. [20] formally defne the value alignment 
problem as cooperative inverse reinforcement learning (CIRL). They 
show that the more traditional framework of apprenticeship learn-
ing can be formulated as a CIRL game. Their results indicate that 
the human acting optimally in isolation may not be an efective way 
to teach the robot. They show that under the CIRL formulation be-
haviors such as active teaching, active learning, and communicative 
actions become optimal. 

Fisac et al. [16] discusses a solution to the CIRL game based 
on established models of cognition and theory of mind. Under 
this solution, the human thinks pedagogically, choosing actions 
that give the most information to the robot about the underlying 
reward function. The robot, in turn, expects this behavior and acts 
pragmatically on the human’s behavior. This enables the robot to 
learn the reward function quickly and efciently. 

Christiano et al. [11] proposes an algorithm to learn from human 
preferences and shows that it can be used to “solve” reinforcement 
learning tasks in which the robot’s goal is to minimize cost to reach 
a goal state. They show that this can be done for complex tasks 
within an hour of the human’s time. Additionally, they show that 
by incorporating human preferences, the robot can learn more ef-
ciently than using traditional deep reinforcement learning methods. 

Milli et al. [30] compare a robot that completely abides by the 
human’s literal order with a robot that instead behaves according 
to its estimate of the human’s underlying preferences. They use 
simulations to compare how much more reward the human would 
get if the robot directly followed the human’s orders vs if the robot 
used an estimate of the human’s preferences. Their results indicate 
that 1) when a human is not rational, a robot should not directly 
obey their commands, 2) The optimal robot obeys only optimal 
commands from the human, and uses the estimate of the posterior 
mean on the reward features to drive its behavior otherwise. 

There are two main diferences between our work and prior 
literature in value alignment. Firstly, most prior work in value 
alignment deals with a human-supervisor robot-worker scenario 
(the robot performs some task and the human is free to interrupt 
the task if they see any unexpected behavior from the robot) or 
scenarios where the human demonstrates ideal behaviors to the 
robot. In our case, however, we want to predict and use the proba-
bility of the human accepting or rejecting recommendations from 
the robot (i.e., robot-recommender human-follower scenario). This 
calls for the embedded trust dynamics and human behavior model, 
which is absent in most previous works in this area. Secondly, in 
our case, there is no true reward function: the human and the robot 
have their own reward functions, and we want to see the efect of 
aligning/not aligning the robot’s reward function with that of the 
human on trust and team performance. Such studies have not been 
done previously, according to the best of our knowledge. 
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2.2 Trust-Aware Decision Making 
In recent years, there has been substantial research in developing 
trust-aware decision-making algorithms for robots that work with 
humans in collaborative tasks. These works model the human’s 
trust in the robot explicitly in the decision-making framework and 
leverage the use of quantitative trust and trust-behavior models. 

Guo et al. [17] and Bhat et al. [5] present the use of the Beta dis-
tribution trust model [19] in a sequential decision-making scenario 
for a human-robot team. They use this model to defne a trust-aware 
Markov Decision Process, which gives optimal actions for the robot 
considering the human’s trust and subsequent behavior. 

Akash et al. [1] model the human-robot interaction as a Par-
tially Observable Markov Decision Process (POMDP) with human’s 
trust and workload as the states. A solution to their formulation is 
presented in [2] which gives optimal level of transparency for the 
robot’s interface depending on the human’s level of trust. 

Chen et al. [9] propose a trust-POMDP that is solved to generate 
optimal trust-based policies for the robot. They demonstrate it in 
a human-subject experiment involving pick-and-place tasks for a 
human-robotic arm team. The robot chooses an “easy" object to 
pick and place to build trust and moves to harder objects when 
trust is high to minimize interruptions from the human. 

Zahedi et al. [44] present a trust dynamics model and a meta-
MDP framework that chooses a robot’s behavior depending on 
the level of trust of the human. They analyze the case where the 
human’s model of the environment may be false leading to sub-
optimal trustworthy policies and untrustworhy optimal policies. 
Their framework generates an optimal policy for the robot that 
chooses the trustworthy sub-optimal policies when trust is low in 
order to increase it and chooses the untrustworthy optimal policy 
when trust is high enough to improve the team’s performance. 

A majority of these works model the human-robot interaction 
as a reward-maximization problem with a reward function that 
is known to the team. Our work difers in this respect; we ofer 
participants the autonomy to formulate their own reward functions, 
providing them only with a broad understanding of the team’s 
objectives. Subsequently, we explore how discrepancies in reward 
functions between humans and robots infuence trust and overall 
team performance. 

3 PROBLEM FORMULATION 
This section describes the task for the human-robot team and the 
mathematical formulation of the interaction. 

3.1 Human-Robot Teaming Task 
We designed a scenario in which the human-robot team performs a 
search for potential threats in a town. The team sequentially goes 
through search sites to look for threats. At each site, the team is 
given a probability of threat presence inside the site via a scan of the 
site by a drone. The robot additionally, has some prior information 
about the probability of threat presence at all of the search sites. 
This prior information is unknown to the human, thus creating 
interdependence between the human and drone. After getting the 
updated probability of threat presence, the robot solves the trust-
aware MDP to generate a recommendation for the human. It can 
either recommend the human to use or not use an armored robot for 

protection from threats. Encountering a threat without protection 
from the armored robot will result in injury to the human. On 
the other hand, using the armored robot takes extra time since 
it takes some time to deploy and move the armored robot to the 
search site. The goal of the team is to fnish the search mission as 
quickly as possible while also maintaining the soldier’s health level. 
Thus, a two-fold objective arises with conficting sub-goals: To save 
time you must take risks, and if you want to avoid risks, you must 
sacrifce precious mission time. 

3.2 Markov Decision Process 
We model the interaction between the human and the robot as a 
trust-aware Markov Decision Process (trust-aware MDP), which 
is a tuple of the form (�, �,� , �, � ), where � is a set of states one 
of which is the trust of the human on the robot, � is a fnite set 
of actions, � is the transition function, � is a reward function and 
� is an embedded human trust-behavior model, which gives the 
probabilities of the human choosing a certain action given the action 
chosen by the robot, their level of trust, etc. Below we provide details 
of our MDP formulation. 

3.2.1 States. We use the level of trust � ∈ [0, 1] as the state in 
our trust-aware MDP formulation. The dynamics of trust are thus 
described by our transition function. 

3.2.2 Actions. At any site, the recommender robot has two choices 
of action. It can either recommend to use or not use the armored 
robot. These are represented by the binary actions �� = 1 and �� = 0, 
respectively. Thus, our action set is � = {0, 1}. After receiving a 
recommendation, the human chooses action �ℎ from the same 
action set. 

3.2.3 Reward Function. The rewards for both agents (the human 
and the robot) are a weighted sum of the negative cost of losing 
health and losing time. The weights for these costs can be diferent 
for the robot and the human. In general, for agent � ∈ {ℎ, � }, the 
reward function can be written as, 

= −�� �� (�, �) ℎ(�, �) − ��
�� (�) . (1)

ℎ 

Here, � is a random variable representing the presence of threat 
inside a search site, � is the action chosen by the human to imple-
ment, � ∈ {ℎ, � } represents the agent, either the human ℎ or the 
robot � . Note that ℎ(�, �) is a function giving the health loss cost 
and � (�) is a function giving the time loss cost. 

3.2.4 Transition Function. The transition function gives the dy-
namics of trust as the human interacts with the robot. We use the 
model from Bhat et al. [5] which models trust as a random variable 
following the Beta distribution based on personalized parameters 
(�0, �0, �� , � � ). Here, �0, �0 are a measure of the initial trust of the 
human, while �� and � � control the efect of successes and fail-
ures on trust respectively. More specifcally, the trust level after � 
interactions is given by 

�� ∼ ����(�� , �� ), (2) 
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where the parameters are updated through weights before the ��ℎ interaction, the distribution after the ��ℎ ∑� 
�� = �0 + � � �

� , (3) 
�=1 ∑� 

�� = �0 + (1 − � � )� � . (4) 
�=1 

Here, � is the number of interactions completed between the human 
and the robot, �� is the current level of trust, and � � is the realization 
of the random variable performance (� � ) of the recommender robot 
at the ��ℎ interaction. It is defned below. (

1, if �ℎ (�� ) ≥ �ℎ (1 − �� ),
� � � � � � = (5)

0, otherwise. 

Here, �ℎ (�� ) is the reward for the human for choosing the recom-
� � 

mended action (�� ) at the ��ℎ interaction and �ℎ (1 − �� ) is the 
� � 

reward for choosing the other action (1 − �� ). Thus, essentially, 
� 

the transition function shifts the distribution to the right if the 
recommend action led to a better immediate reward to the human. 
Otherwise, it shifts the distribution to the left. 

3.2.5 Human Trust-Behavior Model. A human trust-behavior model 
gives the probabilities of a human choosing an action, given the ro-
bot’s action, their trust level, and other factors such as the human’s 
goals/values. In our study, we make use of the Bounded Rationality 
Disuse Model of human trust-behavior. This model states that the 
human chooses the recommended action with a probability equal to 
the human’s current level of trust. If the human chooses to ignore 
the recommendation, s/he will choose an action according to the 
bounded rationality model of human behavior. That is, the human 
will choose an action with a probability that is proportional to the 
exponential of the expected reward the human receives with that 
action. Mathematically, 

� (�ℎ = � |�� = �) = �� + (1 − �� )��, (6)� � 

� (�ℎ = 1 − � |�� = �) = (1 − �� ) (1 − �� ). (7)� � 

where �� is the human’s level of trust at the ��ℎ interaction and �� 
is the probability of choosing action � ∈ {0, 1} under the bounded 
rationality model [16, 30, 45]. It is given by, 

exp(�� [�ℎ (�)]) 
� 

�� = Í . (8) 
� ′ ∈{0,1} exp(�� [�ℎ (� ′)]) 

� 

Here, � is called the rationality coefcient of the human, with a 
higher value indicating a more rational human, and a value of 0 
indicating a human that chooses an action at random. Note that this 
model can be easily extended to the case where multiple actions 
are possible for the human-robot team. We will just need to sum 
over all actions in the denominator to get the probabilities. 

3.3 Bayesian Inverse Reinforcement Learning 
We use Bayesian IRL to estimate the reward weights of the human 
as they interact with the recommender robot. This is done by main-
taining a distribution on the possible reward weights and updating 
it using Bayes’ rule after observing the human’s selected action. 
More precisely, if �� (�) is the belief distribution on the reward 

interaction, ��+1 (�) is given by, ( 
� (�ℎ = �� |�� )�� (�), if �ℎ = �� 

� � � � � ,��+1 (�) ∝ (9)
� (�ℎ = 1 − �� |�� )�� (� ), otherwise. 

� � � 

In our formulation, we only learn a distribution over the health 
reward weight of the human, �ℎ , and assume that the time reward 

ℎ 
weight is defned by �ℎ := 1 − �ℎ . We use the mean of the learnt � ℎ
distribution as an estimate of the human’s health reward weight. 
The Bayesian IRL algorithm requires a prior distribution �0 (�) to 
get started. We ran the algorithm starting with a uniform prior on 
previously collected data [5] and generated an “average" distribu-
tion that can represent the weights for the general population. In 
Experiment 1, we use this informed prior for �0 (�) and in Exper-
iment 2, we use the uniform distribution for �0 (� ) to simulate a 
case where we lack data to set an informed prior. 

4 EXPERIMENT 
This section provides details about the testbed and the human-
subject experiments. The experiments complied with the American 
Psychological Association code of ethics and were approved by the 
Institutional Review Board at the University of Michigan. 

4.1 Testbed 
We developed a 3D testbed using the Unreal Engine game devel-
opment platform. A soldier moves with an autonomous drone in a 
town to search for threats (armed gunmen). Before entering a site, 
the drone scans the site and reports the chance of threat presence 
inside the site (Fig. 1). Then, the participant is presented with the 
average time taken to search a site with and without the armored 
robot to aid their decision. Finally, the participants are given the rec-
ommendation generated by the intelligent agent. If the participant 
chooses to use the armored robot, the armored robot is shown to 
be moving towards the site. This deployment of the armored robot 
takes about 15 seconds. If the participant chooses to not use the 
armored robot, they enter the site directly without any time loss. In 
case a threat is encountered without protection from the armored 
robot, the participant loses 5 points of health. The participant does 
not lose any health if there is no threat or if there is a threat but 
the participant chose to use the armored robot. After exiting each 
house, the participants are asked to adjust a slider to give feedback 
on their level of trust on the agent’s recommendations (Fig. 2). The 
feedback slider shows the threat level, the recommendation, the 
participant’s choice, the presence of threat, and the time it took to 
search the site to help the participants in assessing their trust. 

4.2 Participants 
We collected data from a total of 54 participants, 30 of which par-
ticipated in experiment 1 (Age: Mean 22.6 years, SD 3.6, 14 Female) 
and 24 participated in experiment 2 (Age: Mean 21.4 years, SD 2.3, 
12 Female). All participants were students from the University of 
Michigan. 

4.3 Experiment Design 
We designed three interaction strategies for the intelligent agent: 
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Figure 1: The recommendation interface 

Figure 2: The trust feedback slider used to get feedback from 
the participants after every search site. The mission timer is 
paused when the slider is shown to let the participants take 
their time in adjusting their trust. 

• Non-learner: The intelligent agent does not learn the re-
ward weights of the human. It assumes that the human and 
the intelligent agent share the same reward weights and uses 
these for recommendation success assessment, trust updat-
ing, human behavior modeling, and MDP optimization. 

• Non-adaptive learner: The intelligent agent learns person-
alized reward weights for each human it interacts with. It 
only uses these learned weights for recommendation success 
assessment, trust updating, and human behavior modeling. 
It still optimizes the MDP with its own fxed reward weights. 

• Adaptive learner: The intelligent agent learns personalized 
reward weights for each human. It uses them for recom-
mendation success assessment, trust updating, and human 
behavior modeling, and also optimizes the MDP based on 
these reward weights. 

We employed a within-subjects design. Each participant com-
pleted three missions. In each mission, they interacted with an 
intelligent agent using one of the interaction strategies. To mini-
mize potential order efects, a 3 × 3 Latin Square design was used. 

4.4 Measures 
4.4.1 Pre-experiment Measures. Prior to the experiment, partici-
pants flled in a demographic survey indicating their age, gender, 
academic department, nationality, frequency and skill of playing 
video games, and familiarity with AI/ML algorithms. Participants 
also flled in questionnaires about their personality, propensity to 
trust autonomy, and decision-making style. 

4.4.2 Pre-mission Measures. Before each of the three missions, 
participants rated their preferences. 

• Task Preference: Before the beginning of each mission, we 
ask the participants to rate their preference between saving 
health and saving time by moving a slider between these 
two objectives, showing their relative importance. 

4.4.3 In Experiment Measures. After each site’s search was com-
pleted (i.e., every trial), the participants were asked to report their 
level of trust in the intelligent agent, �� (see fg. 2 for the exact 
question asked during the interaction). The slider values were be-
tween 0 and 100 with a step of 2 points. Additionally, for every trial, 
we measured whether the participants agreed with the intelligent 
agent. With the trial-based data, we measured the following: 

• Average Trust: This was calculated as the empirical mean Í� trust 1 
� �=1 �� . 

• End-of-mission Trust: This was the participant’s self-reported 
trust after the last trial, �� . 

• Number of Agreement: This was computed as the number 
of times the participant chose the recommended action. 

Note that � = 40 is the number of sites in a mission. 

4.4.4 Post-mission Measures. After every mission, participants 
flled out a post-mission survey gauging the following items. 

• Post-mission trust questionnaire: This was measured 
using Muir’s trust questionnaire [31]. It has 9 questions, 
each with a slider range between 0 and 100. 

• Post-mission Reliance Intentions: This was measured 
using the scale developed in Lyons and Guznov [27]. We 
used 6 of the 10 items that were relevant for this task. Each 
item was rated on a 7-point Likert scale. 

• Workload: Workload was measured using the NASA TLX 
scale [21]. We used 5 of the 6 dimensions as our experiment 
involved minimal physical demand. Each item was measured 
using a slider ranging from very low to very high. 

• Performance: We computed the team performance by a 
weighted sum of the percentage health remaining of the 
soldier and the percentage time remaining in the mission. 

Performance = �̂ ℎ · (%ℎ� ) + �̂ ℎ · (100 − %�� ). (10)� ℎ 

where �̂ ℎ and �̂ ℎ := 1 − �̂ ℎ are the reported preferences � 
by the participant before beginning the mission, %ℎ� is 
the percent health remaining and %�� is the percent time 
spent at the end of the mission. This metric allows us to 
convert the two conficting objectives with diferent units of 
measurement into one unifed scale. The higher the value, 
the better the team performance. 

ℎ ℎ 

5 RESULTS 
This section summarizes our results and discusses the implications. 
Table 1 tabulates the results from the two experiments. Repeated 
measures analyses of variance (ANOVAs) were conducted to com-
pare the three interaction strategies. Greenhouse-Geisser correc-
tions to the degrees of freedom were made whenever a measure 
failed Mauchly’s test of sphericity. In Experiment 1, we initiated 
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the IRL learning algorithm with an informed prior. In Experiment 
2, the learning algorithm started with an uninformed prior. 

5.1 Trust, Agreement, and Reliance Intention 
5.1.1 Experiment 1: with informed prior. We observed no signif-
cant diference between the three strategies in average trust (� (2, 58) = 
0.308, � = 0.736), end-of-mission trust (� (2, 58) = 1.192, � = 
0.311), and the Muir’s trust scale (� (2, 58) = 1.550, � = 0.221). 

Additionally, there was no signifcant diference in the number of 
agreements (� (2, 58) = 0.755, � = 0.475) across the three strategies. 
However, there was a signifcant diference in reliance intentions 
(� (1.543, 44.737), � = 0.031) (Fig. 3). Pairwise comparisons with 
Bonferroni adjustments revealed a lower intent to rely on the adap-
tive learner strategy than the non-learner strategy (� = 0.012). 

Figure 3: Exp 1 – Post-mission reliance intentions 

5.1.2 Experiment 2: with uninformed prior. Figs. 4, 5, 6 show the 
comparisons of the three strategies in trust. Repeated measures 
ANOVA revealed signifcant diferences between the three strate-
gies in average trust (� (2, 46) = 14.161, � < 0.001), end-of-mission 
trust (� (2, 46)) = 12.736, � < 0.001, and Muir’s trust scale (� (1.586, 
36.473) = 16.3, � < 0.001). Pairwise comparisons with Bonfer-
roni adjustments revealed that the adaptive-learner strategy led to 
higher average trust, end-of-mission trust, and post-mission trust 
compared to the non-learner strategy (� < 0.001, � = 0.001 and 
� < 0.001, respectively) and compared to the non-adaptive learner 
strategy (� = 0.003, � < 0.001, � < 0.001, respectively). 

Í� 
�=1 �� Figure 4: Exp 2– Average trust 1 

� 

Regarding the number of agreements (Fig. 7), there was a sig-
nifcant diference among the three strategies (� (1.584, 36.435) = 

Figure 5: Exp 2– End-of-mission trust �� 

Figure 6: Exp 2– Post-mission trust questionnaire 

25.829, � < 0.001). Post-hoc analysis showed that there was a signif-
icant diference between the non-learner and the adaptive-learner 
strategies (� < 0.001) and between the non-adaptive-learner and 
adaptive-learner strategies (� < 0.001). 

Comparing reliance intentions (Fig. 8), there was a signifcant 
diference between the three strategies (� (2, 46) = 13.691, � < 
0.001), with the adaptive-learner strategy rated higher than the 
non-learner strategy (� < 0.001) and the non-adaptive-learner 
strategy (� = 0.004). 

Figure 7: Exp 2– Number of agreements 

5.2 Performance 
5.2.1 Experiment 1: with informed prior. Even though there seemed 
to be a decreasing performance trend from non-learner to non-
adaptive learner and to adaptive learner (i.e., 61.47 ± 18.12, 60.25 ± 
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Table 1: Mean and standard deviation (SD) of dependent measures for the three interaction strategies in Experiments 1 and 2 

Experiment 1: with informed prior Í� 
Non-learner (Mean±SD) Non-adaptive learner (Mean±SD) Adaptive-learner (Mean±SD) 

Average trust 1 
� �=1 �� 

End-of-mission trust �� 
Muir’s trust questionnaire 
Number of agreements 
Reliance intentions scale ∗ 

Workload 
Performance 

0.73 ± 0.16 
0.81 ± 0.18 
74.20 ± 14.80 
36.03 ± 3.72 
4.34 ± 1.01 
36.87 ± 18.04 
61.47 ± 18.12 

0.71 ± 0.20 
0.76 ± 0.21 
71.09 ± 23.17 
35.27 ± 4.68 
4.10 ± 1.35 
34.45 ± 17.02 
60.25 ± 17.03 

0.72 ± 0.14 
0.76 ± 0.16 
68.28 ± 17.4 
36.00 ± 2.60 
3.70 ± 1.27 
39.03 ± 16.85 
55.83 ± 20.39 

Experiment 2: with uninformed prior Í� 
Non-learner (Mean±SD) Non-adaptive learner (Mean±SD) Adaptive-learner (Mean±SD) 

∗Average trust 1 
� �=1 �� ∗End-of-mission trust �� 

Muir’s trust questionnaire ∗ 

Number of agreements ∗ 
Reliance intentions scale ∗ 

Workload ∗ 

Performance 

0.42 ± 0.20 
0.33 ± 0.30 
34.51 ± 19.79 
28.17 ± 5.49 
2.16 ± 1.22 
38.18 ± 13.79 
45.86 ± 16.20 

0.45 ± 0.22 
0.35 ± 0.29 
34.97 ± 17.41 
28.67 ± 4.65 
2.38 ± 1.16 
39.82 ± 14.94 
49.11 ± 14.25 

0.65 ± 0.20 
0.64 ± 0.30 
60.57 ± 23.71 
35.62 ± 2.93 
3.58 ± 1.32 
31.13 ± 10.64 
51.60 ± 18.68 

∗ − � < 0.05 

Figure 8: Exp 2– Post-mission reliance intentions 

17.03, and 55.83 ± 20.39) the trend did not reach statistical signif-
cance (� (2, 58) = 2.067, � = 0.136). 

5.2.2 Experiment 2: with uninformed prior. There seemed to be 
an upward trend from non-learner to non-adaptive learner and to 
adaptive-learner. Unfortunately, it did not reach signifcance. 

5.3 Workload 
5.3.1 Experiment 1: with informed prior. Comparing the average 
workload across the three interaction strategies showed no signif-
cant diference (� (2, 58) = 2.634, � = 0.089) (Table 1). Additionally, 
repeated measures ANOVAs did not reveal any signifcant difer-
ences between the three strategies in any of the dimensions. 

5.3.2 Experiment 2: with uninformed prior. Comparing the aver-
age workload (1) across the three interaction strategies showed 
a signifcant diference (� (2, 46) = 10872, � < 0.001). Figure 9 
shows the participants’ responses on each dimension. There were 
signifcant diferences between the three strategies in performance 
(� (2, 46) = 5.443, � = 0.008), efort (� (2, 46) = 4.252, � = 0.02), 

and frustration (� (2, 46) = 5.454, � = 0.007). Pairwise compar-
isons with Bonferroni adjustments showed that the adaptive-learner 
strategy led to higher perceived performance compared to the non-
adaptive learner (� = 0.037) and to the non-learner (� = 0.044)
strategies and led to lower frustration compared to the non-adaptive 
learner (� = 0.032) and to the non-learner (� = 0.017) strategies. 

Figure 9: Exp 2: Responses on the NASA TLX scale 

6 DISCUSSION AND CONCLUSION 
In this study, we developed and compared three robot interaction 
strategies: the non-learner strategy, the non-adaptive-learner strat-
egy, and the adaptive-learner strategy, with and without an in-
formed prior for the IRL learning algorithm. We focused on evaluat-
ing their infuence on various human trust in the robot, agreement, 
reliance, workload, and team performance. 
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6.1 Value Alignment with an Informed Prior 
One critical insight from the research is the observed “uniformity” 
across all three interaction strategies when the IRL algorithm is 
initiated with an informed prior. In Experiment 1, the informed 
prior was calculated by training on a previously collected dataset 
using the same testbed and with participants from the same popu-
lation as this study. Therefore, the calculated prior was considered 
an accurate estimation of the participants’ true values/goals. The 
resulting prior was realistically skewed toward saving health rather 
than saving time. With this accurate informed prior, the three in-
teraction strategies were more-or-less indistinguishable. Among all 
the dependent measures, including trust, agreement, reliance inten-
tions, performance, and workload, we observed only one signifcant 
diference in reliance intentions. This large uniformity across the 
three strategies could be because, with an accurate informed prior 
on human values, there is no room for signifcant alignment to be 
done by the adaptive-learner strategy. This highlights that when a 
robot’s reward function is already closely aligned with that of the 
human a-priori, adaptive strategies may exhibit negligible benefts. 

Out of expectation, we observe a signifcant diference in post-
mission reliance intentions, that participants were willing to rely 
on the non-learner more than the adaptive-learner strategies. This 
result could have been because any alignment from the adaptive-
learner strategy, although very limited, could be regarded as a lack 
of predictability. As pointed out in research on teamwork, the ability 
to predict the actions of one’s teammate is vital [13, 23]. 

6.2 Value Alignment with an Uninformed Prior 
In Experiment 2, when the IRL learning algorithm was initiated 
with an uninformed uniform prior, we observed signifcant benefts 
of value alignment. The adaptive-learner strategy led to signif-
cantly higher trust, high agreement, and reliance intentions. In 
addition, participants had higher perceived performance and lower 
frustration interacting with the adaptive learner, while the team 
performance was maintained. Thus, in the absence of a good initial 
prior, our adaptive framework can be used to build trust in the ro-
bot. This scenario underlines the importance of adaptive strategies 
in real life where a good a-priori estimation of the human’s val-
ues/goals is oftentimes unavailable, ofering an approach to building 
trust while maintaining performance. 

The results from Milli et al. [30] showed that robots should not 
be completely obedient to humans who are not acting rationally. 
Instead, when interacting with such humans, the robot should 
use its estimation of the human’s underlying reward function. We 
extend this by providing a human-subjects study showing that 
personalized value alignment is only benefcial when a good prior 
on the human’s reward weights is unavailable 

6.3 Implications for a broader HRI context 
The algorithmic focus of existing work on value alignment [16, 
20, 43] has one implicit assumption: aligning a robot’s values with 
a human’s is benefcial. Our study is the frst attempt to exam-
ine whether and to what extent such alignment can beneft trust, 
workload, and team performance. We show that personalized value 
alignment is benefcial only when an informed prior is unavailable. 
The implications of our study should extend to other real-life HRI 

scenarios involving conficting objectives. For instance, a rehabili-
tation robot must balance a patient’s pain tolerance with long-term 
health goals when assigning the appropriate level of exercise. 

Our study involved a relatively homogeneous participant group, 
leading to the calculation of a fairly accurate informed prior. How-
ever, achieving such accuracy in real-world settings with demo-
graphically diverse individuals is more challenging. In such cases, 
aligning a robot’s values with those of individual human users be-
comes essential. The benefts obtained from value alignment are key 
for the acceptance and adoption of robots in homes and workplaces, 
highlighting the need for adaptable strategies in HRI design. 

Further, the idea of incorporating a layer of trust in the decision-
making system of an intelligent agent trying to align its values to 
that of the human user is an interesting area to explore in other 
HRI domains like shared control, social robotics, etc. 

6.4 Limitations and Future Research 
The results of our study should be seen in light of the following 
limitations. First, we provide a demonstration in the case when there 
are only two components in the team’s reward function. Therefore, 
we only need to learn the human’s preference for one of the two 
components and can ascertain their relative preference between the 
two objectives. Our formulation, however, can readily be extended 
to the case where there are more than two objectives in the team’s 
reward function, with additional computations required to learn 
and maintain a distribution over each reward weight. 

Second, our simulated scenario consists of binary actions. Judg-
ing the performance of the recommendations is fairly easy in this 
case, since we only need to compare the rewards earned for these 
two actions. In case more than two actions are available, this as-
sessment becomes more difcult. Thus, although the human trust-
behavior model can be readily extended to such a case of multiple 
actions, extending the trust dynamics model is challenging and is 
an interesting avenue for future research. 

Third, in our scenario, there is an expected skewness among the 
general population to be more concerned about saving health. It 
would be interesting to study cases where the two objectives are 
more balanced, resulting in a more balanced informed prior. In such 
cases, personalized adaptation may still be benefcial. 

Finally, our scenario, which entails a trade-of between "saving 
health" and "saving time", and the decision to use or not use an 
armored robot, is informed by the complex decision-making scenar-
ios in real-life HRI contexts, such as DARPA’s SQUAD-X program 
in which individuals receive recommendations from air and ground 
robots for various tasks. While our scenario ofers insights into 
these types of decisions, we recognize it as a simplifed represen-
tation of situations where decisions involve numerous objectives, 
a variety of recommendations, and possible actions. Therefore, 
further research is essential to determine the applicability of our 
fndings in more complex, real-world environments and to vali-
date the robustness of our conclusions in diverse and dynamic HRI 
settings. 
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