
Value Alignment and Trust in
Human-Robot Interaction: Insights from
Simulation and User Study

Shreyas Bhat, Joseph B. Lyons, Cong Shi, and X. Jessie Yang

Abstract With the advent of AI technologies, humans and robots are increasingly
teaming up to perform collaborative tasks. To enable smooth and effective col-
laboration, the topic of value alignment (operationalized herein as the degree of
dynamic goal alignment within a task) between the robot and the human is gaining
increasing research attention. Prior literature on value alignment makes an inherent
assumption that aligning the values of the robot with that of the human benefits the
team. This assumption, however, has not been empirically verified. Moreover, prior
literature does not account for human’s trust in the robot when analyzing human-
robot value alignment. Thus, a research gap needs to be bridged by answering
two questions: How does alignment of values affect trust? Is it always beneficial
to align the robot’s values with that of the human? We present a simulation study
and a human-subject study to answer these questions. Results from the simulation
study show that alignment of values is important for trust when the overall risk
level of the task is high. We also present an adaptive strategy for the robot that
uses Inverse Reinforcement Learning (IRL) to match the values of the robot with
those of the human during interaction. Our simulations suggest that such an adaptive
strategy is able to maintain trust across the full spectrum of human values. We also
present results from an empirical study that validate these findings from simulation.
Results indicate that real-time personalized value alignment is beneficial to trust and
perceived performance by the human when the robot does not have a good prior on
the human’s values.
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1 Introduction

Robots are progressively becoming more essential in our everyday activities,
establishing their roles in numerous fields such as health care, manufacturing,
education, and domestic aid, among others. With this ongoing integration, robots
are transitioning from being viewed merely as devices executing specific tasks to
being recognized as cooperative allies that work alongside humans. Within the
context of human-robot teaming, research studying the trust of the human on their
robot counterpart is becoming increasingly important [6, 11, 18, 56, 62]. Without an
adequate level of trust, we cannot realize the full potential of human-robot teams.

Substantial research efforts have been directed toward creating robots that
demonstrate trustworthy behavior and exploring ways to predict and influence a
human’s trust in robots. For example, one particular line of inquiry is concentrated
on generating explanations for robotic actions [21, 41, 42, 58, 59], which often
results in increased perception of reliability and, consequently, greater trust in
these machines. Other research areas are focused on developing algorithms that
can predict trust in real time [24, 26, 57, 61, 64], understanding the dynamics of
trust [20, 63, 64] devising strategies to mend broken trust [22, 27, 31], and creating
planning methods that take trust into consideration [2, 8, 16, 17, 51, 67].

More recently, the idea of value/goal alignment—aligning the values/goals of
robots with those of humans, has garnered significant attention, with the assump-
tion that such alignment would benefit human-robot interaction [54, 66]. Recent
literature in value/goal alignment is primarily focused on enabling the autonomous
or robotic agent to learn the human’s values/goals through preferences [12, 19, 28]
or demonstrations [4, 23, 28].

However, there is a lack of research empirically examining and quantifying
the effects of alignment on human-robot interaction processes and outcomes. Yet,
there are at least three reasons to suggest that such alignment could be beneficial.
First, prior research has illustrated that agent adaptation to humans can enhance
performance [5, 38]. Second, agent adaptation could be viewed as the agent being
responsive to the human and may, in turn, increase human trust in the agent and
enhance team performance [35]. Third, value alignment not only could facilitate
trust establishment and enhance team performance, but it is also important for
ensuring that machine partners are morally acceptable as they negotiate complex
social situations [33].

In this chapter, we present results from two studies—a simulation and an
empirical verification of the results from simulation. The goal of these studies was
to examine the effect of the degree of alignment of values (seen through the lens of
reward weights) between the human and the robot in a task with conflicting goals.
The results of the simulation study indicate that misalignment of values between the
human and the robot result in a loss of trust, but this loss is only apparent under high-
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risk scenarios. Under low-risk scenarios, the degree of misalignment is not very
influential on trust. In high-risk scenarios, therefore, a robot that adapts its values
to that of the human will result in higher trust by the human. We empirically verify
this claim through a human-subjects study conducted in a high-risk scenario. The
results of this study show that the adaptive-learner strategy presented in our work
is able to learn the human’s values during interaction and this, build and maintain
trust, when compared to a non-adaptive strategy.

2 Related Work

There are two bodies of work closely related to the studies presented in this chapter.
One deals with using trust as a decision variable to drive the decision-making
processes of robots in human-robot teams and the other deals with ensuring the
alignment of values between the human and the robot. A brief review of these fields
is presented in this section.

2.1 Trust-Aware Decision-Making

In the past few years, significant work has been done to create algorithms for
robots that take into account the level of trust humans have in them while
performing collaborative tasks [8, 25, 30, 36, 48, 60, 65]. These studies incorporate
a representation of a human’s trust in the robot into the decision-making processes
of the robot and utilize quantitative models of trust and predict human behavior
depending on this level of trust.

A quantitative trust model based on the beta distribution is presented in Guo
et al. [24]. This model was then used in a simulation study done by Guo et al.
[25] to demonstrate the need for using a trust-gaining reward term in the reward
function of the robot to encourage trust-gaining behavior. Bhat et al. [8] then
conducted a human-subjects experiment using this model and found three types
of trust dynamics and associated personal characteristics with the type of trust
dynamics exhibited by a person, highlighting the need for robot adaptation given
individual differences in trust dynamics.

Trust-aware decision-making has also been made possible by modeling the
interaction as a partially observable Markov decision process (POMDP) with trust
as the partially observable state variable [1, 2, 17, 65]. Akash et al. [1] present a
trust-workload POMDP model that can be learned through interaction data and
can be solved to generate optimal policies for the robot that control the level of
transparency of the robot’s interface [2]. Chen et al. [17] provide a trust-POMDP
model that can be solved for getting optimal policies for a robot. In a collaborative
pick-and-place task with a robotic arm, they use their model to show trust-gaining
behaviors learnt by the robot when it senses that the human’s trust is low. On the
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other hand, when trust is high, the robot selects risky but high-reward actions to gain
the maximum reward.

Zahedi et al. [67] formulate a meta-MDP problemwith trust as a decision variable
to choose the robot’s behavior enabling trust-aware decision-making for the robot. A
robot using this framework is shown to display suboptimal but trustworthy behaviors
over optimal but untrustworthy behaviors when the human’s trust is low. At the same
time, if there is enough trust, the robot chooses the optimal action plans to maximize
reward gain.

Our work differs from these studies in two main aspects. One, a major part of
prior work deals with scenarios in which the reward function is explicitly known by
the team. Further, it is assumed that this reward function is shared by the human and
the robot. In reality, however, each individual may have their own preferences about
the best way of reaching the goal, which are realized as their own reward functions.
This “personal” reward function may be different from the robot’s “designer-set”
reward function. More natural exchanges between the robot and human may not be
ones in which the values are known or aligned. In our work, we take into account
this possible difference in objectives between the robot and the human and study its
effect on the human’s trust and team performance. We also provide results when the
robot uses an adaptive interaction strategy to match its reward function to that of
the human. Secondly, a majority of trust-aware decision-making research deals with
robot-worker human-supervisor scenarios in which the human can choose to either
observe and interrupt the robot or to focus on their own task. In our work, we are
working with a robot-recommender human-decision-maker scenario in which the
robot can only provide recommendations to the human on which action to select.
The final say in which action to implement lies with the human.

2.2 Value Alignment

Another area of study that has received considerable attention within the HRI com-
munity over the past few years deals with the problem of aligning the values/goals
of the robot with that of its human counterpart [3, 13, 15, 23, 28, 44, 45, 55, 66].

Bobu et al. [14] present a brief review of literature on aligning human and
robot representations and conclude by emphasizing the need for future research
in this field and providing some directions for future work. Natarajan et al. [47]
study the effects of adapting the driving behavior of autonomous vehicles (AVs)
to the preferences of the users. Their results indicate that AVs that continuously
adapt their driving style to match the dynamic preferences of users result in higher
level of trust by the users. Mechergui and Sreedharan [43] propose and evaluate
an interactive learning algorithm that solves the goal alignment problem when the
human possesses an incorrect model of the robot’s behavior.

The value alignment problem is formulated as a Cooperative Inverse Reinforce-
ment Learning (CIRL) problem in Hadfield-Menell et al [28]. They argue that
the traditional method of training an inverse reinforcement learning agent through
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human demonstrations in isolation is not an optimal way to teach. They show that
solutions to the CIRL problem result in behaviors for the agent that are akin to active
teaching and active learning. A solution to the CIRL problem is presented in Fisac et
al. [23]. This solution promotes pedagogic behavior by the human teacher, actively
taking into account the learning process of the agent. The agent, on the other hand,
expects this pedagogic behavior and acts pragmatically on it, resulting in efficient
learning of behaviors.

Christiano et al. [19] provide an algorithm that efficiently uses human preferences
to learn robot behaviors that reach the goal states in reinforcement learning tasks.

There are two main differences between the work presented in this chapter and
prior literature in value alignment. Firstly, as noted earlier, most prior work deals
with a human-supervisor robot-worker scenario wherein the robot performs some
task while the human observes it and can interrupt the operation if they want (i.e.,
supervisory control). We study scenarios where the robot recommends actions to
the human and the final choice of action to be implemented lies with the human
(i.e., decision support). Thus, in order to know when the human will accept the
recommendation and when they will not, it is important for the robot to model
human decision-making behavior. One way of doing this is through the level of
trust of the human on the robot’s recommendations. The higher the trust, the higher
the likelihood of the human accepting the recommendation and vice versa. Thus,
we need an embedded trust dynamics and human behavior model, which is absent
in most previous works in this area. Secondly, in our case, there is no true reward
function: The human and the robot have their own reward functions, and we want
to see the effect of aligning/not aligning the robot’s reward function with that of the
human on trust and team performance. To the best of our knowledge, this is one of
the first studies looking into this effect.

3 Simulation Study

As a first step in this research direction, we designed a study in simulation that
looked at the effect of the degree of (mis)alignment of reward weights between the
human and the robot on the human’s trust. This section describes the details of this
simulation study and presents our major results

3.1 Human-Robot Teaming Task

We focus on an Intelligence, Surveillance, and Reconnaissance (ISR) mission for the
human-robot team. The task involves sequentially searching through M search sites
for potential threats. At each site, an intelligent robot provides recommendations to
the human on whether or not s/he should use an armored robot for protection. In
this chapter, the term “robot” refers to the intelligent recommender robot, unless
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otherwise specified. Breaching a site without the armored robot is faster as the
human does not lose time in deploying the armored robot. At the same time, it
is risky as the human may be harmed if a threat is encountered without protection
with the armored robot. Using the armored robot is safer as it protects the human
from the threat. However, it is also slower to use the armored robot as it takes time
to deploy it. The objective of the team is to minimize damage to the human while
also minimizing mission completion time.

3.2 Trust-Aware Markov Decision Process

We model the interaction between the human and the robot as they sequentially
search through the town as a Trust-Aware Markov Decision Process (trust-aware
MDP). It consists of states, actions, reward function, transition function, and a
human trust-behavior model.

3.2.1 States

We define the trust of the human in the robot as the state. To quantify trust, we use
the model from [8] which defines the trust .ti at site i to follow a Beta distribution
with parameters .αi and .βi , i.e.,

.ti ∼ Beta(αi, βi). (1)

3.2.2 Actions

At any site i, the robot has two actions available: Recommend to USE the armored
robot or recommend to NOT USE the armored robot. So, we say that, .ar ∈ {0, 1}.
Here, action 0 corresponds to recommending to not use the armored robot and action
1 to recommending to use the armored robot.

3.2.3 Rewards

We define the rewards for each agent as a weighted sum of the health loss reward
and time loss reward. The reward at site i for agent o is given by,

.Ro
i

⎛
ah
i ,Di

⎞
= −wo

hh
⎛
ah
i ,Di

⎞
− wo

cc
⎛
ah
i

⎞
. (2)

Here, the weights .wo
h and .wo

c are the weights associated with the health loss reward
and the time loss reward, respectively, for agent .o ∈ {h, r}. The superscript r shows



Value Alignment and Trust in Human-Robot Interaction 45

that these values are for the robot, and h shows that the values are for the human.
.ah

i is the action chosen by the human at site i. .Di is also a random variable which
represents the presence of threat inside site i. .h(·, ·) and .c(·) are functions that give
the health loss cost and the time loss cost, respectively. In our simulation, we defined
these functions as follows, .h(1, 1) = 0, h(0, 1) = 10, h(1, 0) = 0, h(0, 0) = 0 and
.c(0) = 0, c(1) = 10.

3.2.4 Transition Model

The transition model describes the evolution of trust during the interaction. We use
the reward-based performance metric from [8] to define state transitions.

.αi = αi−1 + Piv
s, . (3)

βi = βi−1 + (1 − Pi)v
f . (4)

With the performance .Pi defined as,

.Pi =
⎧
1, if Rh

i (ar
i ) ≥ Rh

i (1 − ar
i ),

0, otherwise.
(5)

3.2.5 Human Trust-Behavior Model

The human behavior model encodes how a human agent responds to recommenda-
tions made by the robot. We state that the probability of the human to accept the
recommendation given by the robotic agent is directly proportional to their level of
trust. If the human does not accept the recommendation, s/he chooses the action that
gives a higher immediate expected reward with a higher probability. More precisely,
let .ar

i and .ah
i denote the action recommended by the robot and the action chosen by

the human at site i, respectively. Then,

.

P

⎛
ah
i = a|ar

i = a
⎞

= ti + (1 − ti )p
a
i ,

P

⎛
ah
i = 1 − a|ar

i = a
⎞

= (1 − ti )
(
1 − pa

i

)
.

(6)

Here .ti is the trust level at the ith site and .pa
i is given by,

.pa
i = exp(κE[Rh

i (a)])
exp(κE[Rh

i (a)]) + exp(κE[Rh
i (1 − a)]) . (7)

Here, the superscript a can be either 0 or 1 corresponding to the two actions. .κ

controls the effect of the rewards on the probability .pa
i . In human behavior modeling
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literature, this is often referred to as the rationality coefficient [7, 23, 66]. The higher
the value of .κ , the more likely it is that the human will choose the action with the
higher reward. On the other hand, .κ = 0 represents a uniformly random human,
one who chooses each action with equal probability. We call the resulting model the
bounded rationality disuse model, since it combines concepts from both models.

3.2.6 Value Iteration

The robot solves the trust-aware MDP via value iteration. It selects the action
by maximizing the expected reward at the current step summed together with a
discounted value of the next state at the next stage.

.Qi(si, a) = E
⎾
Rr

i (a)
⏋ +

⎲
si+1∈S

γP(si+1|si, a)Vi+1(si+1). (8)

.Vi(si) = max
a

Qi(si, a). (9)

At the final stage, the action that gives the maximum immediate expected reward
is chosen.

.VN(sN) = max
a

E
⎾
Rr

N(a)
⏋
. (10)

3.2.7 Bayesian Inverse Reinforcement Learning

The robot uses a Bayesian inverse reinforcement learning [53] framework with the
assumed human trust-behavior model to learn the human’s preferences between
saving health and saving time. The robot maintains a belief .bi(w

h
h) over the possible

health reward weights of the human. Here, the subscript i denotes that this is the
robot’s belief just before the .ith site is searched. After observing the action selected
by the human, the robot updates this belief using Bayes rule.

If at site i, we observe that the human chooses the recommended action, we
update the belief according to

.bi+1(w) ∝ P

⎛
ah
i = a|wh

h = w, ar
i = a, ti

⎞
bi(w)

∝ (
ti + (1 − ti )p

a
i

)
bi(w). (11)

If, at site i, we observe that the human chooses the action opposite to the one
recommended, we update the belief according to

.bi+1(w) ∝ P

⎛
ah
i = 1 − a|wh

h = w, ar
i = a, ti

⎞
bi(w)
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∝ (1 − ti )(1 − pa
i )bi(w). (12)

Here, .pa
i is computed according to Eq. 7, substituting weight w in the expected

reward computation. We use the mean of the belief distribution as a proxy for the
human’s health weight. We always set .wh

c = 1 − wh
h .

3.2.8 Threats and Threat Levels

We follow the following strategy to set the threat levels at the search sites. First,
a prior probability of threat presence d is fixed across all sites. Then, at each site
independently, threat presence is determined by a Bernoulli distribution with d as
the parameter. The drone gets an updated threat level after scanning a site. This
updated threat level is generated by a beta distribution with a peak at .0.1 for when a
threat is not present and a peak at .0.9 for when a threat is present inside the site.

3.2.9 Simulating Human Decision and Feedback

We sample from the set of trust parameters .Θ that was generated from a previous
study [8] to get .θ = (α0, β0, v

s, vf ) for the simulated human. These parameters are
unknown to the robot, and it estimates them via maximum likelihood estimation (for
details, refer to [8]). The human also has reward weights .wh

h,wh
c (:= 1− wh

h) which
are unknown to the robot. The human gives trust feedback by sampling from the
beta distribution trust update model, using the observed rewards associated with the
recommendation to judge the performance of the robot. The human chooses his/her
action using the bounded rationality disuse model with .κ = 1.

3.3 Results: Simulation Study

This section provides details about the major results from this simulation study.

3.3.1 Regions in End-of-Mission Trust

We observed four distinct regions in the end-of-mission trust as a function of the
reward weights of the human and the robot (Fig. 1). If a risk-averse human is paired
with a risk-taking robot, the end-of-mission trust can get very low (the region in the
top left of the plots in Fig. 1) and vice versa. This is especially true when the risk
level is higher, as can be seen in the higher difference in trust levels when the values
align and when they don’t in Fig. 1b compared to the same in Fig. 1a. In the figure
on the left, the probability of threat being present in any site was .0.3, while the same
was .0.7 in the figure on the right.
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Fig. 1 The observed regions in end-of-mission trust as a function of the health weights of the
human .wh

h and the robot .wr
h. The figure on the left is the simulation result when there is a relatively

low chance of threat presence at any search site .(d = 0.3). The figure on the right is when there is
a higher chance of threat presence at any search site .(d = 0.7). (a) .d = 0.3. (b) .d = 0.7

3.3.2 Effect of Threat Level

Since the results from the last section show some potential effects of the level of
threat associated with the mission on the end-of-mission trust, we ran another set of
simulations, this time, fixing the reward weights of the human and the robot (i.e.,
the trust region) and varying the level of threat. Figure 2 shows plots of the end-of-
mission trust as a function of the prior threat level d for the four regions of trust.
Further, it is seen that if the values are roughly aligned, trust increases. If the values
are not aligned, trust is still high when the overall risk is low (at low threat levels d).
However, the human starts to lose trust in the robot if the values are misaligned and
the risk level is high.

Figure 3 shows an example when both the human and the robot are extremely
risk-averse. In this case, although there is alignment in the reward weights of the
human and the robot, the level of trust is generally very low. This is because the
robot tries to maximize expected reward, but the human is judging performance
through observed rewards. At lower risk levels, it would be better to be cautious in
the long term, but it is more likely to get better rewards in the short term by being
risky. Thus, it seems to the human that the robot is overly cautious, resulting in a
decrease in trust.

3.3.3 Effect of Adapting to the Human’s Rewards

We can update the reward weights of the robot at each time step by using the
distribution on the reward weights of the human maintained by the robot (see
Sect. 3.2.7). This results in an “adaptive” interaction strategy in which the robot
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Fig. 2 The effect of the prior probability of threat presence in any house d on the end-of-mission
trust, after fixing a trust region. (a) Region 1. (b) Region 2. (c) Region 3. (d) Region 4

Fig. 3 The effect of prior
probability of threat presence
in any house d on the
end-of-mission trust when the
human and the robot are both
extremely risk-averse
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Fig. 4 Comparing the adaptive strategy with the non-adaptive strategy in the end-of-mission trust
feedback given by the simulated human for two different levels of threat. The non-adaptive strategy
sets the robot’s health reward weight to .0.5. (a) .d = 0.3. (b) .d = 0.7

adapts to human values throughout their interaction. We ran simulations when the
robot followed such a strategy, starting with a uniform distribution on the reward
weights. We can then compare this adaptive strategy with a non-adaptive strategy
of the robot with .wr

h = 0.5 (the mean of the initial uniform distribution) to see the
effect of adapting to human preferences.

Figure 4 shows the effect of the human’s health reward weight on the end-of-
mission trust reported by the human at two threat levels: low .(0.3) and high .(0.7).
As can be seen, below .wh

h < 0.5, there is no clear difference between trust on the
non-adaptive strategy and that on the adaptive strategy. This is because at .wr

h = 0.5,
the robot has no preference between losing health and losing time. However, in
expectation, not using the RARV is always better than using the RARV. Thus, the
recommendation matches the human’s preferred action (since the human also does
not care about losing health when .wh

h < 0.5). As a result, trust is high for both
non-adaptive and adaptive strategies. On the other hand, however, when .wh

h > 0.5,
the human prefers to save health over saving time. Thus, the risky recommendations
of the non-adaptive strategy reduce trust, while the adaptive strategy is able to learn
this preference and is able to maintain the human’s trust.

Figure 5 compares the two strategies for two different human preferences
(preferring to lose health .wh

h = 0.3 and preferring to lose time .wh
h = 0.7) as the level

of threat is changed. Again, we see similar behavior that when the human prefers to
lose health, both strategies result in the same level of trust of the human on the robot.
On the other hand, when the human prefers to lose time, the non-adaptive strategy’s
risky recommendations lead to a loss in trust as the level of threat increases. Again,
the adaptive strategy is able to learn this preferences resulting in a much higher level
of the human’s trust, irrespective of the level of threat.
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Fig. 5 Comparing the adaptive strategy with the non-adaptive strategy in the end-of-mission trust
feedback given by the simulated human for two different levels of threat. The non-adaptive strategy
sets the robot’s health reward weight to .0.5. (a) .wh

h = 0.3. (b) .wh
h = 0.7

3.4 Discussion: Simulation Study

A key takeaway from our results is that, under the bounded rationality disuse model,
value alignment is, in general, good for trust. However, at low-risk settings, value
alignment may not be as important for gaining trust. This conclusion is somewhat
in line with the finding of [40], wherein the authors found increased reliance on
automation in high-risk situations compared to low-risk situations. Parkhe and
Stewart [50] claim that trust is only necessary when the losses can exceed potential
gains (i.e., when the risk is high). We take it a step further by saying that value
alignment is only necessary for trust when the risks are high. Further, since humans
are generally more concerned with observed outcomes rather than expected rewards,
the boundaries of the regions can result in lower end-of-mission trust despite having
values aligned between the human and the robot.

In light of our results, we claim that completely aligning the robot’s values to
the human’s may not always be the best, especially when the human is extremely
risk-averse. This may result in loss of performance and loss of trust. On the other
hand, not aligning the values at all will certainly lead to a loss in trust, especially
in high-risk situations. Thus, we postulate that there may be merit in looking for
a middle ground that trades off between fully aligning the values and not aligning
them at all. This could be a very interesting direction for future research.

4 Empirical Study

This section provides details on the human-subjects experiment carried out to
empirically validate the results of the simulation study. An extension of this study
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Fig. 6 The recommendation interface showing the information about the threat level and the
recommendation by the intelligent agent. Also shown, the trust feedback slider used to get feedback
from the participants after every search site. The mission timer is paused when the slider is shown
to let the participants take their time in adjusting their trust. (a) The recommendation interface. (b)
Trust feedback slider

is presented in [9, 10]. Interested readers are encouraged to refer to these studies for
further details.

4.1 Testbed

We developed a 3D testbed using the Unreal Engine game development platform.
Within the testbed, a human is paired with an autonomous drone and an armored
robot to complete the reconnaissance mission described in Sect. 3.1. Figure 6a
shows a screenshot of the recommendation interface used by the intelligent agent.
It displays the threat level indicated by the drone, the average time to search a site
with and without the Robotic Armored Rescue Vehicle (RARV), and the system’s
recommendation. The participant is then free to select an action by pressing the
associated key on the keyboard. The participants are, at all times, displayed the
time left to complete the mission and the current health level of the human. They
are also displayed the index of the current search site. They are given a total of 25
minutes to complete searching a total of 40 sites. Each time the human encounters a
threat without protection from the RARV, they lose 5 points of health. Deploying the
RARV takes approximately 15 seconds. After exiting a search site, the participants
are asked to report their trust on the recommendation system on a slider (shown in
Fig. 6b). They are shown the drone’s assessed level of threat, the recommendation
given by the system, the action selected by the participant, the ground truth of threat
presence, and the time it took them to search the site on the feedback dialog to
aid with recall. The mission timer is stopped when the participants are shown the
feedback slider. This is to let the participants take their time to assess and report
their trust accurately. The threats and threat levels the drone gets after scanning a
site are randomly generated while ensuring that there are threats in 23 out of the 40
sites, corresponding to a prior threat level .d = 0.575.
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4.2 Conditions

We designed three interaction strategies for the intelligent agent:

• Non-learner: The intelligent agent does not learn the reward weights of the
human. It assumes that the human shares the same reward weights as itself
and uses these for recommendation success assessment, trust updating, human
behavior modeling, and MDP optimization.

• Non-adaptive learner: The intelligent agent learns personalized reward weights
during interaction with each human. It only uses these learned weights for rec-
ommendation success assessment, trust updating, and human behavior modeling.
It still optimizes the MDP with its own fixed reward weights.

• Adaptive learner: The intelligent agent learns personalized reward weights for
each human. It then adopts this learnt reward weights as its own.

We employed a within-subjects design. Each participant completed three mis-
sions. In each mission, they interacted with an intelligent agent using one of the
interaction strategies. They were not informed which interaction strategy the robot
was using. They were only informed of their dual goal of minimizing damage to
the soldier while also completing the mission as quickly as possible. A .3 × 3 Latin
Square design was used to minimize any learning effects.

4.3 Participants

We collected data from a total of 24 participants (Age: Mean .21.4 years, SD .2.3, 12
Female). All participants were students from the University of Michigan.

4.4 Measures

4.4.1 Pre-experiment Measures

Prior to the experiment, participants completed a demographic survey indicating
their age, gender, academic department, nationality, frequency and skill of playing
video games, and familiarity with AI/ML algorithms. Participants also filled in
questionnaires about their personality, propensity to trust autonomy, and type of
decision-making style.

4.4.2 Pre-mission Measures

Before each of the three missions, participants rated their preferences.
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• Task Preference: Before the beginning of each mission, we ask the participants
to rate their preference between saving health and saving time by moving a slider
between these two objectives, showing their relative importance.

4.4.3 In Experiment Measures

After each site’s search was completed (i.e., every trial), the participants were asked
to report their level of trust in the intelligent agent, .ti (see Fig. 6b for the exact
question asked). The slider values were between 0 and 100 with a step size of 2
points. Additionally, for every trial, we measured whether the participants agreed
with the intelligent agent’s recommendation. With the trial-based data, we measured
the following:

• Average Trust: This was calculated as the empirical mean trust . 1
M

∑M
i=1 ti .

• Number of Agreements: This was computed as the number of times the
participant chose the recommended action.

Note that .M = 40 is the number of sites in a mission.

4.4.4 Post-mission Measures

After every mission, participants completed survey assessing the following items.

• Post-mission trust questionnaire: Measured using Muir’s trust questionnaire
[46]. It has nine questions, each with a slider with a range between 0 and 100.

• Post-mission Reliance Intentions: Measured using the scale developed by
Lyons and Guznov [39]. We used six of the ten items that were relevant for this
task. Each item was rated on a 7-point Likert scale.

• Workload: Workload was measured using the NASA Task Load Index (NASA
TLX) scale [29, 37, 38]. We used five of the six dimensions as our experiment
involved minimal physical demand. Each item was measured using a slider
ranging from very low to very high.

• Performance: We computed the team performance by a weighted sum of the
percentage health remaining of the soldier and the percentage time remaining
in the mission. The weights used were the participants rated preferences at the
beginning of the mission.

.Performance = ŵh
h · (%hM) + ŵh

c · (100 − %cM). (13)

where .ŵh
h and .ŵh

c := 1 − ŵh
h are the reported preferences by the participant

before beginning the mission, .%hM is the percent health remaining and .%cM

is the percent time spent at the end of the mission. This metric allows us to
convert the two conflicting objectives with different units of measurement into
one unified scale. The higher the value, the better the team performance.
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Table 1 Mean .± standard deviation (SD) of measures for the interaction strategies

Non-learner Non-adaptive learner Adaptive-learner

Average trust . 1
M

∑M
i=1 ti

a .0.42 ± 0.20 .0.45 ± 0.22 .0.65 ± 0.20

End-of-mission trust .tM a .0.33 ± 0.30 .0.35 ± 0.29 .0.64 ± 0.30

Muir’s trust questionnairea .34.51 ± 19.79 .34.97 ± 17.41 .60.57 ± 23.71

Number of agreementsa .28.17 ± 5.49 .28.67 ± 4.65 .35.62 ± 2.93

Reliance intentions scalea .2.16 ± 1.22 .2.38 ± 1.16 .3.58 ± 1.32

Workloada .38.18 ± 13.79 .39.82 ± 14.94 .31.13 ± 10.64

Performance .45.86 ± 16.20 .49.11 ± 14.25 .51.60 ± 18.68
a .p < 0.05

4.5 Results: Empirical Study

This section summarizes our results and discusses the implications (see Table 1 for
an overview). Repeated measure analyses of variance (ANOVAs) were conducted
to compare the three interaction strategies. Greenhouse-Geisser corrections to the
degrees of freedom were made for the measures that failed Mauchly’s test of
sphericity.

4.6 Trust, Agreement, and Reliance Intention

Figure 7a, b show the comparisons of the three strategies in trust. Repeated measures
ANOVA revealed significant differences between the three strategies in average trust
.(F (2, 46) = 14.161, p < 0.001) and Muir’s trust scale .(F (1.586, 36.473) =
16.3, p < 0.001).

Pairwise comparisons with Bonferroni adjustments revealed that the adaptive-
learner strategy led to higher average trust and post-mission trust compared to the
non-learner strategy (.p < 0.001 and .p < 0.001, respectively) and compared to the
non-adaptive learner strategy (.p = 0.003 and .p < 0.001, respectively).

Regarding the number of agreements (Fig. 7c), there was a significant difference
among the three strategies .(F (1.584, 36.435) = 25.829, p < 0.001). Post hoc
analysis showed that there was a significant difference between the non-learner and
the adaptive-learner strategies .(p < 0.001) and between the non-adaptive-learner
and adaptive-learner strategies .(p < 0.001).

Comparing reliance intentions (Fig. 7d), there was a significant difference
between the three strategies (.F(2, 46) = 13.691, p < 0.001), with the adaptive-
learner strategy rated higher than the non-learner strategy (.p < 0.001) and the
non-adaptive-learner strategy (.p = 0.004).
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Fig. 7 Comparing the human’s trust and reliance intentions on the robot when the robot follows
different interaction strategies. (a) Average trust . 1

M

∑M
i=1 ti . (b) Subjective Trust—Muir’s scale.

(c) Number of agreements. (d) Reliance intentions

4.7 Performance

There seemed to be an upward trend from non-learner to non-adaptive learner and
to adaptive learner. Unfortunately, it did not reach significance.

4.8 Workload

Comparing the average workload (1) across the three interaction strategies showed
a significant difference .(F (2, 46) = 10872, p < 0.001). Figure 8 shows the
participants’ responses on each dimension. There were significant differences
between the three strategies in performance .(F (2, 46) = 5.443, p = 0.008), effort
.(F (2, 46) = 4.252, p = 0.02), and frustration .(F (2, 46) = 5.454, p = 0.007).
Pairwise comparisons with Bonferroni adjustments showed that the adaptive learner
strategy led to higher perceived performance compared to the non-adaptive learner
.(p = 0.037) and to the non-learner .(p = 0.044) strategies and led to lower
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Fig. 8 Exp 2: Responses on the NASA TLX scale

frustration compared to the non-adaptive learner .(p = 0.032) and to the non-learner
.(p = 0.017) strategies.

5 Discussion: Empirical Study

In this study, we empirically verified the results of the simulation study by having
participants interact with non-adaptive strategies which was not value aligned with
them and an adaptive strategy that continuously adapts to the human’s values during
interaction. Results from this study correspond to the case with a high level of risk
.d = 0.575 from the simulation study in which we saw that adapting to human values
kept trust high while trust is lost while interacting with a misaligned robot.

Additionally, we also observed that human workload is lower when interacting
with the adaptive-learner strategy compared to that when interacting with the non-
learner and non-adaptive learner strategies. Although the objective performance
was the same across the three strategies, the participants perceived that they were
performing better with the adaptive learner strategies. The similar objective perfor-
mance across the three strategies could be attributed to the information provided to
the participants, which was usually enough to make their own decisions, regardless
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of the robot’s recommendations. Thus, the human action selection policies were
very similar across the three strategies. Only the adaptive learner strategy was able
to learn and match this human policy resulting in a higher number of agreements
with the robot’s recommendations, which we postulate, led to lower workload and
higher trust.

6 Conclusion

Most prior work in value alignment in HRI [23, 28, 43, 66] makes one key
assumption: Aligning the robot’s values to that of the human’s is beneficial. This
may be true when we look at the human in isolation; the human’s rewards would
increase in this case. However, when looking at it from a teaming perspective, we
do not know if the human’s personal values are the best for handling the task at hand
[3, 32, 44]. Thus, this assumption needs to be checked in the context of human-
robot teams. Our study is one of the first to attempt to study this assumption. Our
simulation results indicate that value alignment is beneficial for trust only when
there is a high level of risk in the task involved. When the level of risk is low, even
value misaligned robots can lead to high trust. Our empirical study shows that value
alignment under high risk is indeed beneficial for trust and workload.

We also explore the idea of incorporating a layer of trust within the value
alignment problem. We theorize that since there is a tradeoff between degree of
value alignment and trust and since it has been shown that trust is a predictor of
behavior in humans [34, 49], it is important for the robot to try and find a balance
between aligning itself to the human’s values and maintaining trust. We hope to
see more work done toward this goal in other domains like shared control, social
robotics, rehabilitation robotics, etc.

The results of our study should be seen in light of the following limitations. First,
we provide a demonstration in the case when there are only two components in the
team’s reward function. Therefore, we only need to learn the human’s preference for
one of the two components and can ascertain their relative preference between the
two objectives. Our formulation, however, can readily be extended to the case where
there are more than two objectives in the team’s reward function, with additional
computations required to learn and maintain a distribution over each reward weight.

Second, our task consists of binary actions: using or not using an armored
robot. Judging the performance of the recommendations is fairly easy in this case,
since we only need to compare the rewards earned for these two actions. In case
more than two actions are available, this assessment becomes more difficult. There
could be effects like satisficing [52] and heuristics which would make defining the
performance metric difficult. Thus, although the human trust-behavior model can
be readily extended to such a case of multiple actions, extending the trust dynamics
model is challenging and is an interesting avenue for future research.
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Third, in our scenario, there is an expected skewness among the general
population to be more concerned about saving health. It would be interesting to
study tasks where the two objectives are more balanced.

Finally, our scenario, which entails a tradeoff between “saving health” and
“saving time,” and the decision to use or not use an armored robot, is informed by
the complex decision-making scenarios in real-life HRI contexts, such as DARPA’s
SQUAD-X program in which individuals receive recommendations from air and
ground robots for various tasks and Shield AI’s NOVA 2 program involving the
use of small drones for surveillance and decision support. While our scenario offers
insights into these types of decisions, we recognize it as a simplified representation
of situations where decisions involve numerous objectives, a variety of recommen-
dations, and possible actions. Therefore, further research is essential to determine
the applicability of our findings in more complex, real-world environments and to
validate the robustness of our conclusions in diverse and dynamic HRI settings.
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