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Abstract

The topic of this project is about prioritizing vaccination during the Covid-19 pandemic
in Michigan U.S. using dynamic programming. Besides prioritizing vaccination, we also
consider the vaccine supply chain issue and combine these two problems together, which
makes it a spatial-temporal multi-objective optimization problem with stochastic pat-
terns. In a finite time horizon T , we evaluate the priority among G groups of population
(based on age) at each time stage. We divide Michigan into two regions based on the
risk level. The GSIR (General Susceptible-Infected-Removal) model is utilized to de-
scribe the dynamics of the transmission and the contact matrix is introduced to define
the latent risk to infect others. The vaccine supply chain problem is also modelled as
stochastic along with time-variant vaccine production ability at each supply node and
transportation cost at each edge within the network. In the second part, we implemented
the numerical simulation based on Monte Carlo method with up-to-date Covid-19 data
in Michigan. The sensitivity analysis, conclusions, and future work are discussed in the
end.
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1 INTRODUCTION 1

1 Introduction

The novel coronavirus (COVID-19) has been spreading rapidly, posing a great threat to

global health and economy. Although vaccines are being developed, the initial production

of vaccines would be very limited compared to the number of people in need of these

vaccines. The population of a geographical region can be divided into groups based on

age. These groups have different risks of getting infected and infecting others. Due to

these factors, it becomes important to come up with a prioritization plan to distribute

the vaccines among these population groups.

Secondly,these vaccines are produced and distributed from different areas. So, the trans-

portation cost associated with the supply of vaccines to cities within that region also

needs to be considered. These costs may be variable depending on conditions such as

weather.

Finding the optimal policy of vaccine distribution becomes a challenging problem given

these two competing objective functions. In this study, we propose a model that finds

the best policy to optimize a weighted sum of these objectives. We model the spread

of the disease using a generalized SIR model of infectious diseases and demonstrate our

model using data from the state of Michigan [2].

1.1 Related Work

Wan et al. came up with the Generalized SIR model for modeling the spread of the novel

coronavirus [8]. Their model determined the optimal policy for implementing various

levels of shutdown in the economy considering the economic and infection costs. Matrajt

et al. used simulation based search to find the optimal vaccine allocation strategy [5].

However, their model assumed a deterministic spread of the virus. Surveys by Roijers

et al. and Liu et al. focus on problems with multiple competing objectives [7, 3]. Wu

et al. consider the ethical aspects of a vaccine prioritization plan [9]. They also show

how prioritizing the worse-off groups of populations can be ethically feasible and benefi-

cial. Yaesoubi and Cohen also propose a generalized Markov chain model for modeling

the spread of an infectious disease [10]. However, their model suffers from the curse of

dimensionality when the population size increases beyond a certain value.



2 PRELIMINARIES 2

2 Preliminaries

2.1 The Markov decision process

For a Markov decision process (MDP), a tuple M = (S,A, P, γ, R) is defined to claim a se-

quential decision making model, where: S is a finite set of states; A = {a1, a2, · · · , ak} is a

set of k ≥ 2 actions; P = {Psa(·)|s ∈ S, a ∈ A} are the next-state transition probabilities,

with Psa(s
′) giving the probability of transitioning to state s′ upon taking action a in

state s; γ ∈ (0, 1] is the discount factor; and R specifies the reward distributions. In

this problem, for simplicity, we will assume rewards are deterministic and bounded, and

since it is a multi-objective MDP problem, here R = {R1, · · · , RN}T is a vector of N

reward functions for N different objectives. The finite horizon is predefined as T , which

can be set large enough to represent the infinite horizon case.

Also, in order to make it more realistic, we apply deterministic policies at each time period

t. Given a deterministic policy π, for each objective n, there is one value function V π
n,t0

(s)

corresponding to state s and time period t0. Then V π
n,t0

(s) = Eπ[
∑T

t=t0
Rn(st, at)|st0 =

s]. For the MDP setting, the objective is typically to find an optimal policy π∗ which

maximizes the reward or minimizes the cost. Two remarks here: we will define the

objective as minimizing the total cost; for multi-objective problems, we will consider

a unified weight vector w for the linear combination of N objective value functions,

{∃w ∈ RN
+ s.t. wTVπ

t0
(s) ≤ wTVπ′

t0
(s)}, where π and π′ are two feasible policies,

wT1 = 1 and Vπ
t0

(s) = (V π
1,t0
, · · · , V π

N,t0
)T . In fact, the ”optimal” policy π∗ may not be

unique since it will depend on how much weight we would like to select on each individual

objective. Therefore, the Pareto-optimal policy could be introduced, that is, a policy can

not improve further without sacrificing any of others. But again, the final decision still

depend on the rule-maker’s subjective consideration, which we will discuss later.

2.2 The transmission model: Generalized SIR

When it comes to model the transmission of a disease, the SIR model has been proved

to be one of the most widely applied model to describe the dynamics of infection disease

[8].

The SIR model is a type of compartmental model for modeling the spread of infectious

diseases. These models assign different compartments to the population depending on

their health state. In the SIR model, people are categorized into three compartments:

The Susceptible group of people who have not yet been infected but have a possibility of
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Figure 1: Transitions in the SIR model

getting infected, the Infected group of people are the ones that are currently carrying the

disease and can transmit it to the susceptible people, and the Removed group which is

the group of people that have either recovered, vaccinated or died and hence, cannot be

infected again. The tuple (S, I, R) represents the number of people in each of these three

groups at a given time, and thus constitutes the state of disease spread. Each member of

the population typically progresses from susceptible to infectious to removed. Two hyper

parameters, β and γ, control the rate of spread of the disease. Here, β captures the rate

of spread of infection and γ captures the rate at which people transition from the infected

group to the removed group.

While SIR model well fits in many cases, there are still at least two deficiencies for simply

applying naive SIR model to this problem. Firstly, we can see that the infection rate β

and removal rate γ are all constants, which cannot reflect the influence of the actions that

we take in different regions. Secondly, the SIR model is deterministic without stochastic

patterns, which is not realistic and over simplified. Having considered the above aspects,

prompted by relevant researches, the dynamic of getting infected can be modelled as a

Poisson process because we can view the future new cases as the number of arrival events

during time period t; the dynamic of removal (recovering or death) can be modelled as

a Binomial process because during each period t, the infected people are whether still

infected or getting recovered/death. Therefore, the generalized SIR model can be shown

as below:

XS
l,t+1 = XS

l,t − eSl,t, eSl,t ∼ Poisson(βl,t(Al,t = al,t)X
S
l,t

XI
l,t

Ml

)

XR
l,t+1 = XR

l,t + eRl,t, eRl,t ∼ Binomial(XI
l,t, γt)

XI
l,t+1 = Ml −XS

l,t −XR
l,t

where Al,t is the action taken in region l at time period t. Note that the actions taken

in every regions are mutually dependent at the same time t, and βl,t(Al,t = al,t) de-

notes the infection rate under action al,t, and γ is assumed the same in every region

(suppose the medical treatment ability is state-wide equal). Then the parameter vector

θt = (γt, β1,t, · · · , βL,t)T is what we need to formulate the generalized SIR model.
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2.3 Vaccine supply chain

Mclean et al. wrote a paper studying the global production of seasonal and pandemic

influenza [6]. Since there weren’t any concrete studies done on the capacity of Covid

vaccines, these may be a reasonable approximation. In their paper, they state that in

one year that companies could create enough vaccines to vaccinate 86% of the current

population. It is possible that this might be an overestimate for the Covid vaccines, but

this will be our baseline. To adapt it from the world to Michigan we will take the current

population of Michigan multiplied by 86% and the yearly ratio of our time period.

3 Details in Model Formulation

In the model estimation step, Covid-19 data from several adjacent counties are aggregated

together as region-based to share information and operate as the basic unit of the whole

state. In the decision making step, all eight regions of Michigan take simultaneous actions

according to the state-wide distribution plan.

3.1 State Space

For each region l, at each decision time period t, according to the estimated transition

model, the current state Sl,t = (XS
l,t, X

I
l,t, X

R
l,t) and the next state Sl,t+1 = (XS

l,t+1, X
I
l,t+1, X

R
l,t+1)

are related by the conditional density for Sl,t+1 given Sl,t and Al,t in the G-SIR model.

The available data to help make decision is the cumulative number of confirmed cases up

to time t in region l, denoted as observation OI
l,t. Intuitively, OI

l,t can be considered as XR
l,t

if we assume the infected people are quarantined until recovery/death and they won’t get

infected again. As for XI
l,t, it is not trivial if time t is not the initial t0. On the one hand,

we can assume that the initial XI
l,t0

= OI
l,t0
−OI

l,t0−D, where D is a fixed number indicating

the delay time of from being infected to being quarantined. When t > t0, we will estimate

the XI
l,t in the following way: suppose among XI

l,t0
, the proportions of each population

group are α1, α2, · · · , αK s.t.
∑K

k=1 αk = 1, and we will utilize the contact matrix

to describe the potential risk of infecting other people by a specific group of infected

population, and then estimate the future XI
l,t+1. More details will be explained in the

next section. Finally, XS
l,t = Ml − XI

l,t − XR
l,t, assuming the total population in region l

remains the same regarding the time period t.
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3.2 Action Space

Theoretically, the action space in this problem would be of nearly infinite dimensions if

we allocate the vaccines completely region-wise. In fact, it is neither realistic nor practi-

cable. Because first we need to satisfy the constraint that the sum of vaccines allocated

to each region equal to the vaccine production ηt, which means the allocated vaccines to

each region are linearly dependent; to the rule-makers, it is also impossible for them to

select a policy from numerous options. Here, we propose the following action space.

As mentioned above, suppose at time t, the total vaccine production is ηt, which is ob-

viously less than the total population in all regions
∑L

l=1Ml. We firstly allocate the

vaccines to each region based on the proportion of the region-wise population and state-

wise population, that is Ml∑L
l=1Ml

· ηt. For a specific region l with G groups of population,

the action space contains finite options and these options are designed with the domain

knowledge or by experts. For example, the rule-makers can either prioritize the vacci-

nations by the infected ratio of each group or by the susceptible ratio of each group, or

combine these two perspectives together with each weights. In this case, the dimension

of the action space for region l at time t is three.

3.3 State Transition

At the initial time period t0, we need to first obtain the posterior of θt in the G-SIR

model with known data. Firstly, γt is the intrinsic property of Covid-19, which can be

easily obtained with the current data and relative literature, while we can also estimate

it dynamically. βl,t denotes the influence of taking each kind of actions in region l at time

t. Here we use Maximum Likelihood Estimation to obtain the approximation of βl,t:{
β̂l,t = arg max{L(βl,t|D)}
γ̂t = arg max{L(γt|D)}

The results and proofs are given below.



3 DETAILS IN MODEL FORMULATION 6

From the G-SIR model, the changes of XS
l,t come from the Poisson random variable,

naturally, for any t′ in [t0, t], we would like to find a β̂l,t such that maximizes the likelihood

of all eSl,t′ happening accordingly.

L(βl,t|D) = log

(
t∏

t′=t0

(βl,tZl,t′)
eS
l,t′

eSl,t′ !
e−βl,tZl,t′

)

=
t∑

t′=t0

[
eSl,t′ log(βl,tZl,t′)− βl,tZl,t′ − log(eSl,t′ !)

]

where Zl,t′ = XS
l,t′

XI
l,t′

Ml

From the optima conditions,
∂L

∂ ˆβl,t
=
∑t

t′=t0
(
eS
l,t′

βl,t
− Zl,t′) = 0

∂L2

∂2 ˆβl,t
= −

∑t
t′=t0

eS
l,t′

β2
l,t
< 0

Thus,

β̂l,t =

∑t
t′=t0

eSl,t′∑t
t′=t0

Zl,t′

To estimate γt, we have: {
eRl,t ∼ Binomial(XI

l,t, γt)

E[eRl,t ∼ Binomial|XI
l,t] = γtX

I
l,t

Note that, since actions don’t influence γt, all collected data (XS, XI , XR) can be utilized

in estimating γt. Given the data set, similarly, we can write the log likelihood function

as:

L(γt|D) = log

(
t∏

t′=t0

(
XI
l,t′

eRl,t′

)
γ
eR
l,t′
t (1− γt)X

I
l,t′−e

R
l,t′

)

=
t∑

t′=t0

[
log

(
XI
l,t′

eRl,t′

)
+ eRl,t′ log(γt) + (XI

l,t′ − eRl,t′) log(1− γt)

]

From the optima conditions,
∂L
∂γ̂t

=
∑t

t′=t0
(
eR
l,t′

γt
−

XI
l,t′−e

R
l,t′

1−γt ) = 0

∂L2

∂2γ̂t
= −

∑t
t′=t0

(
eR
l,t′

γ2t
−

XI
l,t′+e

R
l,t′

(1−γt)2
) < 0
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Thus,

γ̂t =

∑t
t′=t0

eRl,t′∑t
t′=t0

XI
l,t′

Having known the parameters, we further denote the conditional transition probability

P (Sl,t+1|Sl,t, Al,t) = f(·|·, ·, θ̂t). Again, θ̂t = (γ̂t, β̂1,t, · · · , β̂L,t)T .

3.4 Cost Functions

Since it is a multi-objective problem, we will discuss the individual cost function one

by one. First, we want to minimize the impact by the Covid-19 after we prioritize the

vaccination. Epidemiological cost CE
l,t is naturally defined as the number of new cases

XS
l,t − XS

l,t+1. Second, we also want to minimize the transportation cost of delivering

the vaccines. Suppose there are F factories which can produce the vaccines and they

are located in the Michigan state. The unit transportation cost pf,l from each factory f

to each region l is different and stochastic due to the external factors, for example, the

weather. Suppose the total number of vaccines is Nv, and the corresponding production

at each factory is Nf s.t.
∑F

f=1Nf = Nv. Then the total transportation cost can be

formulated as:

min CT
t =

F∑
f=1

L∑
l=1

Nf,lpf,l

s.t.
L∑
l=1

Nf,l = Nf ∀f ∈ F

F∑
f=1

Nf,l = Nv ·
Ml∑L
l=1Ml

∀l ∈ L

pf,l ∼ Gaussian(µf,l, σf,l) ∀f ∈ F, ∀l ∈ L

With the defined transportation cost, we can then combine the epidemiological cost and

the transportation cost together with some predefined weight vectorw. Next, by choosing

the wight vector, the agent can learn a deterministic policy π̂t0,w through implementing

At0 = π̂t0,w(St0 ;w, t0). The following optimization problem is what the agent is going to

solve to obtain π̂t0(·;w, t0):

π̂t0(·;w, t0) = arg min
π

Eπ,θt
[ T∑
t=t0

( L∑
l=1

CE
l,t + wtC

T
t

)]
In this forward calculation, we denote the Eπ,θt as the total expected cost of CE

t =∑L
l=1C

E
l,t and CT

t ; the transition probability P (Sl,t+1 = sl,tt+1|Sl,t = sl,t, Al,t = al,t) =
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f(sl,t+1|sl,t, al,t;θt). Note that the transportation cost is only dependent on time and

independent on the actions.

4 Model Application in Michigan study

In this section, we will apply the model proposed above to the real-world case. Some

explanations and theoretic supplements are introduced. The numerical simulation is

studied with the real-world data.

4.1 Data Preparation

For simplicity, all counties in Michigan are aggregated into eight regions and each region

represents one corresponding basic operation unit. The regions are shown in Figure 2.

To reduce the complexity of decision making, we broke the the regions into two groups:

high and low risk. This division was done based on whether the daily cases in that region

were more or less than the average daily cases for the whole state. This division then

takes the number of action decisions from eight to two.

Figure 2: The eight regions in Michigan d

High risk Saginaw Grand Rapids Kalamazoo Jackson
Low risk Upper Peninsula Traverse City Lansing Detroit
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Table 1: Daily Contact Matrix for Age Groups 0-19, 20-59, and 60+

Age 0-19 20-59 60+

0-19 0.792 2.238 0.444
20-59 2.238 1.365 1.397
60+ 0.444 1.397 0.315

4.2 Infection Risk: Contact Matrix in Covid-19 pandemic

In Table 1, it shows the daily number of individuals that a person will contact of each age

group. These were estimated using contact data from Wuhan and Shanghai by Zhang

et al., while also considering contact intensities between age groups [11]. That intensity

factor between groups was calculated in a paper written by Liu et al. [4]. It is important

to note that we are assuming that the contact data between age groups in China is

representative of Michigan. To address the uncertainty of that assumption, there will be

sensitivity analyses done on the values in the matrix.

After trying to incorporate the contact matrix into our model, we noticed that the contact

matrix values from China did not match well with the GSIR dynamics of infection spread.

Hence, we then decided not to use the contact matrix in our final simulations. However,

we believe that our framework should work well if the contact matrix for Michigan was

found.

4.3 Design of Action Space

Recall that the target of this project is to prioritize the vaccination among different

groups of population, which here is based on age. Theoretically, the number of possible

actions are nearly infinite as given a number of vaccines allocated to one region, suppose

the available number of vaccines for region l at time t is ηl,t, and there are G groups of

population, then any action which satisfies the following constraints is feasible:{ ∑G
g=1 η

g
l,t = ηl,t

ηgl,t ≥ 0 ∀g ∈ G

where ηgl,t represents the number of vaccines allocated to group g population in region l

at time t.

If we set the action space in this way, it is neither realistic nor computationally efficient.

As the rule-makers, they don’t have to decide exactly how many vaccines are allocated to



4 MODEL APPLICATION IN MICHIGAN STUDY 10

each groups, and in fact, many actions in this action space are redundant and they can

be aggregated somehow. Therefore, we propose three basic but intuitive action options

for rule-makers to choose from at each region l:

• Prioritize the vaccination based on the number of possible new cases among each

group at time t, that is ηgl,t = ηl,t ·
XI,g

l,t

XI
l,t

, where XI,g
l,t represents the new cases in group

g in region l at time t;

• Prioritize the vaccination based on the ratio of susceptible population and infected

population of groups, that is ηgl,t = ηl,t ·
rgl,t∑G

g=1 r
g
l,t

, where rgl,t =
XI,g

l,t

XS,g
l,t

;

• Prioritize the vaccination based on the number of susceptible population of each

group at time t, that is ηgl,t = ηl,t ·
XS,g

l,t

XS
l,t

• No prioritization and the vaccines will be equally distributed based on the ration

of group non-removal population and total non-removal population, that is, ηgl,t =

ηl,t ·
XS,g

l,t +XI,g
l,t

Ml−XR
l,t

Here the fourth action can be tested as the benchmark without prioritization. There are

also several assumptions needed in order to make the model coherent. Firstly, we suppose

that the action is selected and conducted at the beginning of each time period but its

effectiveness will not be observed until at the beginning of next time period, which means

there is a one stage delay for vaccines to take into effects; Secondly, we suppose that the

vaccines are absolutely successful, which means if ηgl,t number of vaccines are applied to

group g, then the number of removal population of group g in the next time period will at

least increase ηgl,t, more precisely speaking, XR,g
l,t+1 ≥ ηgl,t. An accompanying consequence

is XR
l,t+1 −XR

l,t ≥ ηl,t + eRl,t.

With the contact matrix, further inference about possible infected people in the next

time period t + 1 can be revealed by utilizing the contact patterns within and between

each group of the population.

4.4 Numerical Simulation

The data we used was collected from the publicly available source of the Michigan State

website, mainly the daily number of newly detected cases [2]. From the data which was

collected, details were introduced with respect to the eight regions represented in figure

2. All the parameters used as the default setting in the model are listed in table 2

The population data by age was obtained through the United States Census Bureau

and it was aggregated to reflect the age groups and regions mentioned above [1]. It is

presented in table 3.
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Table 2: Model parameters

Parameters Value

Region L 2
Episodes 1,000

Simulation Period T/Day 29
Available Vaccines η/Day 24,000

Discounting factor α 1.0
Forecasting Window H 4
Detection Delay D/Day 9

Discounting Factor ε 0

Table 3: Data by age group
Region Age group Total Population Confirmed Cases Deaths

0-19 62923 1488 <10
Upper Peninsula 20-59 144071 6845 <10

60+ 91857 3389 212
0-19 92056 755 <10

Traverse City 20-59 204152 5045 15
60+ 148951 2849 156
0-19 397424 8492 <10

Grand Rapids 20-59 793761 41414 71
60+ 343930 13222 712
0-19 136620 3591 <10

Saginaw 20-59 289341 21813 94
60+ 180358 9830 827
0-19 240272 4212 <10

Kalamazoo 20-59 485254 21578 54
60+ 238676 8210 496
0-19 143153 2781 <10

Lansing 20-59 314538 11279 25
60+ 133411 3315 216
0-19 1263276 17662 <10

Detroit 20-59 2739909 95673 742
60+ 1240358 38505 5095
0-19 71966 1075 <10

Jackson 20-59 151356 5524 19
60+ 79244 2544 149

4.5 Algorithms

In the simulation, the main working flow is described as the follows: Firstly, the baseline

results for comparisons are necessary. Recall that we have proposed four action options

before, all the first three actions will be considered as the possible action taken at any
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time period, and the last action will serve as the baseline action as it seems more like

a commonsense to many people. Besides that, a random policy will also be tested and

served as a baseline result; Secondly, to obtain the results with the randomness the

model has, we sampled paths using Monte Carlo method with applying a certain policy

and found using the transition function discussed in section 3.4. The prediction period

was set to be T = 4 days. We assume that each of the regions receive a fixed number of

vaccines proportional to the total population of that region. Our policy then decides the

proportion of vaccines to be given to each age group at each decision epoch according to

the available actions in the action space. The results are discussed in the next section.

For the Algorithm 1, it is used to find the best action for the current state. Acknowledging

the randomness of the model and the large dimension of the state space, the prediction

window was defined as 4 days ahead, which means the current best action would be

selected by minimizing the accumulated cost in the following 5 days. Note that even

though some actions are based on ratios, the similar logic will still apply: we have a fixed

total number of vaccines for each region, and we can calculation how many vaccines to

distribute for each age group with the given ratios.

Algorithm 1 Action Selection (for risk level L)

Input: St, Contact Matrix Ω , Infected probability Pt, Prediction Window H
Output: At

Initialize Cost = 0
for j = 1, 2, 3 do

Action[j], given St[X
I
t ]

if St[X
I
t ] 6= 0 then

Explore all the possible sample paths from now till the next five time periods
for h = 0, 1, · · · , H − 1 do

for i = 1, 2, · · · , i ∈ G do

Obtain infected people in each group XI,i
t+h

Estimate new cases by i X̂
I|i
t+1+h(j)= XI,i

t+hΩ[i, :]Pt+h(j)[:, i]

end

Estimation of new cases X̂I
t+1+h(j) =

∑
i=1 X̂

I|i
t+1+h(j)

Cost[j] += αhXI,i
t+h

end

end

end
At =arg min

j
Cost

return At

For the Algorithm 2, it is used to obtain the total accumulated cost by taking the action

selected from the Algorithm 1. In order to mitigate the influence of high variance, we

calculated the expected value from many episodes. Since the cost from the transportation
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is not relevant, in our simulation, we just neglected this part and only solved the problem

with respect to the epidemiological perspective.

Algorithm 2 Entire Time Horizon Cost Calculation

Input: St0 , T , Contact Matrix Ω , Infected probability P t0

Output: Ct0:T
Set C = 0, Cl = 0 ∀` ∈ L
for t = t0; t ≤ T − 1 do

for ` = 1; ` ≤ L do
A`,t = ActionSelection(S`,t,Ω,Pt)

Update θ̂t = (γ̂t, β̂1,t, · · · , β̂`,t)T
S`,t+1 ← (S`,t, A`,t), P (S`,t+1|S`,t, A`,t) = f(·|·, ·, θ̂t)
Update P t

C` = C` + S`,t[X
S]− S`,t+1[X

S]
end

Ct0:t = wEt
∑L

`=1C` + wTt
∑

tC
T
t

end
return Ct0:T

For the Algorithm 3, it is used to search for the optimal policy. The Monte Carlo method

was used to test the given trial policy (such as always taking action 4 during the whole

time horizon) and obtain the expected costs. Then we updated the current policy if the

new policy could outperform the existed one.

Algorithm 3 Policy Search

Input: St0 , T , Contact Matrix Ω , Infected probability P t0 , Episodes R
Output: π̂∗t0(·;wt0 , t0)
for r = 1, · · · , R do

Obtain Cr
t0:T

by applying Monte Carlo method (Initial Trial Policy)
end

V̂ (St0) = Er
[
Cr
t0:T

]
, estimated value function of St0 , Set V̂ (St0) as the baseline value

for π̂t0(i) do

Apply the Monte Carlo method to obtain the expected costs Ĉt0:T (i)
if Ĉt0:T (i) < V̂ (St0) then
π∗t0 = π̂t0(i)

end

end
return π∗t0

5 Results and Conclusions

In this section, the results of the simulations will be presented. The simulation is run

on Google Colab and the averaged running time is 19.39 minutes per scenario. Then we
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conducted sensitivity analysis. The discussion and future work will also be addressed in

this section.

5.1 Simulation Results

With the default parameter setting in the Table 2, we tested our model and compared

the results of the optimal policy we found with the predefined baseline policy, as shown

in the Figure 3.

Figure 3: Comparison of simulated optimal policy and baseline policy

As indicated in the plot, we can see that the results of our optimal policy are better than

the baseline policy which always takes action 4. The y-axis means the daily new cases

per million. It takes quite a long time for our policy to be better than the baseline, which

may be due to the limited action space or because of the limitations of our model.

5.2 Sensitivity Analysis

Table 4 shows the parameters that were changed in our sensitivity analysis. We wanted

to test the validity of our model by changing key inputs. Based on those, we will be able

to tell if it reacts correctly to adjusting scenarios.

In figure 4, the delay until an individual are detected infected is changed. This plot shows

that the longer someone takes to know they are infected, the more daily cases there will
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Table 4: Variation of Parameters

Parameters Lower Bound Default Upper Bound

Detection Delay D 6 9 12
Vaccine Supply η/Day 18000 24000 30000

be as they could infect other people before they get quarantined. When they find out

they are infected at an earlier time, the daily cases are reduced. Also, by changing the

detection delay D, the estimation of transition probability will also be varied because the

initial values of β and γ are dependent on D. With different initial β and γ, the following

parameters of our model are altered throughout. The takeaway is that the government

needs to take more tests for the public to decrease the detection delay D as much as

possible.

Figure 4: 6 (left) vs 12 (right) Day Detection Period

In figure 5, we compare the model using 18,000 and 30,000 vaccines supplied daily. We

can see that when we raise the number of vaccines, the ending number of daily new cases

is lowered. When we decrease the number of vaccines, the opposite happens. This was to

be expected, but it shows that our model reacts correctly to changes in the parameters.

Even though we increased the number of vaccines from the first day, the effect cannot

been seen until the four to five days later because considering the detection delay is rela-

tively large, the infected people can still infect others but as time goes, more accumulated

benefit can be found.
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Figure 5: 18000 vs 30000 Daily Vaccines

5.3 Discussions

In this project, we proposed a Generalized SIR model to depict the dynamics of Covid-19

spread in Michigan State involving two random variables. How to prioritize the vaccina-

tion is somehow controversial especially when it needs to take every social and economic

perspective into considerations. Our solution is to based on the age group of people in

the state since there is an obvious age-dependent characteristic revealed according to the

current data. We divided the whole population into three age groups and designed the

heuristic action space. The results show that the costs obtained by applying our policy

are lower than the baseline, which may be a commonsense policy to many people. Having

said that, there is no doubt that the randomness of this model makes it vulnerable to

many external disturbance. Also, the way we divide the population could be modified as

the age cannot fully depict the intrinsic dynamics of disease spreading, but groups divided

by different occupations could provide more inspection of how people will interact with

others. While not many concrete researches have been conducted so far, some guidelines

of how to prioritize vaccines have been posted online, where most of them suggest to

prioritize the vaccines based on the occupations. One problem we encountered during

the simulation was that the contact matrix we utilized was not accurate enough to serve

as the ground truth. Similarly, the contact matrix for different occupations needs to be

explored and that would be the key to this problem. Our model is simplified in terms

of many aspects due to the computational limitation and available data. One of the



5 RESULTS AND CONCLUSIONS 17

major assumptions we made was that the infection rate remained the same across each

age group. This assumption was made because of data limitations. We believed that the

difference in the total population of each age group should be enough to have different

infection numbers in each age group. Having separate infection rates for different age

groups would definitely improve this model.

Acknowledging the large dimension of the state space and the state-action pairs are one

to many mapping, the best way may be using the Approximated Dynamic Programming

(ADP) or using Reinforcement Learning method to deal with this issue. In the future, it

is possible to apply Double Deep Q Networks (DDQN) since the action space is discrete

and the state space is of a high dimension. One fact is that the randomness will defect

the prediction and thus influence the action to take.

5.4 Workload Summary

Shreyas Bhat worked on data pre-processing and initial estimation of model parameters

and coding.

Ruixuan Zhang worked on the design of the model and coding.

Isaac Smith worked on model design, document preparation, and code debugging.

Everyone contributes equally in this project.
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