Solving W O R DL E using Deep Reinforcement Learning

EECS 545

4 N

Introduction

In Wordle, the player gets six turns to guess a
five-letter word. During each turn:
® Yellow — letter present but incorrect index
® Green - letter present at exact index
® Grey - letter not present in the word
The game is won if the word is guessed within six
attempts and lost otherwise.

Wordle

WlE
sft]ajc|k
FILIALIIR

Mathematically, an optimal winning strategy for
Wordle is given by the information theory
approach. In this project, we try to implement a
deep reinforcement learning model to solve
Wordle and achieve performance as close to the
information theory approach as possible.

Advantage Actor-Critic Pipeline

® A2C is well suited for Wordle because it combines Value-based and
Policy-based methods for discrete action spaces

® Actor generates a probability distribution over the action space given
the current state

® Critic tries to learn the value function for the model

® Loss function is a weighted sum of the actor loss, critic loss, and entropy
loss

Dictionary
reduction

Log

Actor head Softmax

Dot
product

Feed Forward
Linear /LSTM

State

Vector

Log
probabilities
of actions

State-value

Critic head

prediction

o)

State Description

® State 1 used for Word-level Wordle model

For each letter, at each index of the
word, describes Green, Yellow,
Turns remaining Black and Unknown information
[26 x 1]

A0 TS e

Binary representation of
letters used /not used

® State 2 used for Character-level Wordle model

For each letter, at each index of the
word, describes yes, no or maybe
[26 x 1]

Binary representation of
letters used /not used

Turns remaining

Anu Kumar, Hardik Patil, Rohan Sequeira, Shreyas Bhat, Sonali Mohanty

Reward Function
Repeated Grey Letters Reward (character level)
® Reward is handed out only for unique Greens, Yellows and Greys
® Step reward is applied from the 3™ turn onwards
® No reward for guessing off the bat in 15t turn

UNIVERSITY OF

MICHIGAN

4 N

Results (contd.)

® We found that the performance deteriorates for all models on the full
scale Wordle game (max actions possible)

® The character-level model performs well but requires way too many turns
to win a game on average

Win percentage for full action space and varying word-length Avg turns to win a game for full action space and varying word-length
7

o

Win (%)
o

Avqg turns to win
W5}

]

=

Model Variations

® We created a character-level model for 4, 5 & 6-letter versions of Wordle

® We also created word-level model for 4 & 5-letter versions of Wordle and
trained them on linear and LSTM neural networks

® The action space for 4, 5 and 6-letter Wordle was 2348, 13000 (2315
targets) and 6000 (2000 targets) words long, respectively

® Dictionary reduction functionality was introduced to reduce number of
possible actions at each step to help train the model better

Results

® For a character-level model, we observed that the model doesn’t have to
choose meaningful words and hence can prune the action space more
effectively compared to dictionary reduction

® For a word-level model, even after dictionary reduction, the action space
could have hundreds or thousands of possible words to choose from,
rendering the model ineffective at solving Wordle

Loss ratio vs Number of iterations

Character-level-1l Word-level-LSTM Word-level-Linear

— 4-letter
o-letter

N—

000 025 050 075 100 125 150 0.0 0.5 1.0 15 2.0 0 1 2 3 4 5
Number of iterations leb Number of iterations leb Number of iterations leb

1.0 —— 4-letter
-letter
— b-letter

0.8 - W
" L

— 4-letter
o-letter

=~
=]

Loss Ratio
Loss Ratio
Loss Ratio

=
o

0.2

0.0 -

® To investigate the effect of size of action space, we trained our model
where only a limited set of words formed the action space

® As the size of action space increases, performance decreases, shown in
the plots below

Win percentage for varying word length and size of action space Agg turns to win for varying word length and size of action space

B3 10 words
1 100 words
B 1000 words

B3 10 words
[100 words
B 1000 words 5

120 A

100 +

a0 ~

Win (%)

60 ~

Avg turns to win

40 1

20 - 1

0- 04

4-LSTM 4-Linear >LSTM o-Linear 4LSTM 4-Linear 5-LSTM 5-Linear

80 - 6 -
60 - :
40 4 .
20 | _
0 0

4 LSTM 4 Linear 4-Char(L) 5LSTM 5 L‘Lnear 5-Char(L) 6-Char(L) 4LSTM 4-Linear 4-Char(L) 5LSTM 5-Linear 5-Char(L) 6-Char(L)

Example Games

4 & 5 |letter games from A2C Word-level

R{I[D/EQLIIVIEREIVIAIDIEJCIRIOIAIK
TWIINET HIINJUINM EJAICIT

GIRIEJEJCIRIAIS|S
HEEEE CIRIOAIK

® Character-level model
wins more consistently in
comparison to word-level
model

® Character-level model
doesn’t always use a
valid word in each turn

4,5 & 6 letter games from A2C Character-level model

NINE QARNE EVARE EEENE DRENEN DEREE
LIAIR[EFL{A[RIEQS|A|I[T/EQS|A|I [TEQLIAIS|I|E SIIEIT
N[I[S|END[I[S/ENCIRIAID/EJCIRIAIN|LEMIUIT]I E[R
NNEGE GDNE GEAGRNE BEREAEN NEONENEN ANEGER

L{I/MEJR[I[D/ENOIVIAID/EJCIRIO/AIKNEIN|T|I/ONMAIO|RIKIE|D
LIIIVIE E[VIAID ENE NueN NEREEn
HEEE NN C[T[I|O|N
P T/ I ON
N Y

Conclusion & Discussion

® With longer training periods the win rate increases for character level
model but so does the average turns to win the game

® Character level model cheats it way through — at each turn, it doesn’t
necessarily use an actual word from the dictionary

® The word-level model suffers due to HUGE action space (dictionary

reduction doesn’t help much)

Models do not learn as they get stuck in local minimums

Word-level model also suffers from vanishing gradients problem

Performance is better when the action space is small (<1000)

All models perform poorly when target word rhymes with possible

words from the dictionary

/
\.

Future Steps

® Sequentially train the model on increasing size of action space

® Retraining on words that the model fails to learn

® Hyperparameter tuning (Discount factors, weights for actor/critic loss,

oatch size, hidden layers and hidden sizes)

® Improving reward function by incorporating a penalty for repeating
words (word-level) and trying invalid words (Character-level)

