
W O R D L ESolving using Deep Reinforcement Learning
Anu Kumar, Hardik Patil, Rohan Sequeira, Shreyas Bhat, Sonali Mohanty

Introduction
In Wordle, the player gets six turns to guess a

five-letter word. During each turn:
• Yellow – letter present but incorrect index
• Green – letter present at exact index
• Grey – letter not present in the word
The game is won if the word is guessed within six
attempts and lost otherwise.

Advantage Actor-Critic Pipeline

State Description

Reward Function

Example Games

Conclusion & Discussion

Future Steps

EECS 545

Results

Mathematically, an optimal winning strategy for
Wordle is given by the information theory
approach. In this project, we try to implement a
deep reinforcement learning model to solve
Wordle and achieve performance as close to the
information theory approach as possible.

• With longer training periods the win rate increases for character level
model but so does the average turns to win the game

• Character level model cheats it way through – at each turn, it doesn’t
necessarily use an actual word from the dictionary

• The word-level model suffers due to HUGE action space (dictionary
reduction doesn’t help much)

• Models do not learn as they get stuck in local minimums
• Word-level model also suffers from vanishing gradients problem
• Performance is better when the action space is small (<1000)
• All models perform poorly when target word rhymes with possible

words from the dictionary

• Reward is handed out only for unique Greens, Yellows and Greys
• Step reward is applied from the 3rd turn onwards
• No reward for guessing off the bat in 1st turn

• Sequentially train the model on increasing size of action space
• Retraining on words that the model fails to learn
• Hyperparameter tuning (Discount factors, weights for actor/critic loss,

batch size, hidden layers and hidden sizes)
• Improving reward function by incorporating a penalty for repeating

words (word-level) and trying invalid words (Character-level)

• Character-level model
wins more consistently in
comparison to word-level
model

• Character-level model
doesn’t always use a
valid word in each turn

4 & 5 letter games from A2C Word-level

4, 5 & 6 letter games from A2C Character-level model

• A2C is well suited for Wordle because it combines Value-based and
Policy-based methods for discrete action spaces

• Actor generates a probability distribution over the action space given
the current state

• Critic tries to learn the value function for the model
• Loss function is a weighted sum of the actor loss, critic loss, and entropy

loss

• State 1 used for Word-level Wordle model

• State 2 used for Character-level Wordle model

Results (contd.)

Model Variations
• We created a character-level model for 4, 5 & 6-letter versions of Wordle
• We also created word-level model for 4 & 5-letter versions of Wordle and

trained them on linear and LSTM neural networks
• The action space for 4, 5 and 6-letter Wordle was 2348, 13000 (2315

targets) and 6000 (2000 targets) words long, respectively
• Dictionary reduction functionality was introduced to reduce number of

possible actions at each step to help train the model better

• For a character-level model, we observed that the model doesn’t have to
choose meaningful words and hence can prune the action space more
effectively compared to dictionary reduction

• For a word-level model, even after dictionary reduction, the action space
could have hundreds or thousands of possible words to choose from,
rendering the model ineffective at solving Wordle

• To investigate the effect of size of action space, we trained our model
where only a limited set of words formed the action space

• As the size of action space increases, performance decreases, shown in
the plots below

• We found that the performance deteriorates for all models on the full
scale Wordle game (max actions possible)

• The character-level model performs well but requires way too many turns
to win a game on average


