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1 Summary of Algorithms

The goal of unconstrained optimization is to solve the following problem:

min
x∈Rn

f(x), (1)

where f : Rn → R. This is usually accomplished by iterative methods of the following form:

xk+1 = xk + αkdk, (2)

where αk is a (possibly varying) step size, and dk is a search direction. A common requirement on the

search direction is that it must be a descent direction, i.e. ∇f(xk)
Tdk < 0, where ∇f(xk) denotes the

gradient of f at xk. The algorithms investigated in this project are summarized below.

1.1 Gradient Descent

Gradient descent is possibly the simplest unconstrained optimization algorithm. The search direction dk is

simply set to −∇f(xk), so that ∇f(xk)
Tdk = −∥∇f(xk)∥2 < 0. At each iteration, a step is taken along

the negative gradient of f at the current iterate, and the length of the step is determined by αk. Gradient

descent is usually implemented using a line search. On general non-convex problems, gradient descent

converges to a stationary point, but this need not even be a local minimum, and can be a saddle point.

1.2 Newton’s Method

Newton’s method exploits second-order information of f , such that the search direction dk satisfies

∇2f(xk)dk = −∇f(xk), where ∇2f(xk) denotes the Hessian of f at xk. If ∇2f(xk) is positive definite, dk

is a descent direction. This ‘Newton’ direction imposes a degree of scale in a local neighborhood of the

optimal point x∗. Newton’s method converges quadratically to the optimal point when the initial iterate

is in a certain neighborhood of this point. However, outside this neighborhood, it is possible that dk is an

ascent direction. Using a line search implementation, Newton’s method can be ‘globalized’, provided that

the Hessian is modified to ensure that dk is a descent direction at each iteration.

1.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Davidon-Fletcher-Powell (DFP)

Algorithms

Quasi-Newton methods such as BFGS and DFP present a convenient middle-ground between the com-

putationally cheap gradient descent, and the fast convergence achieved in Newton’s method. In both
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algorithms, the search direction dk = Hk∇f(xk), where Hk is an approximation of the inverse Hessian[
∇2f(xk)

]−1
. At each iteration, this approximation is updated using first-order information only. Both

BFGS and DFP are ‘rank-2 updates’, in that the the approximations are updated by rank 2 matrices, i.e.

Hk+1 = Hk+ a rank-2 matrix. The two algorithms are ‘duals’ of each other – the inverse Hessian update

in BFGS has the same structure as the Hessian update in DFP, and vice versa. Both algorithms can be

used in either a line search or a trust region framework. In the latter scenario, the update equations are

used to modify the model in the trust region subproblem from one iteration to the next.

1.4 Trust Region – Conjugate Gradient Methods

Trust region methods differ from line search methods in that we first set a radius within which we ”trust”

our model of the objective function to be accurate enough. It is after this step that we compute a direction

of descent on the model. To determine this direction, we solve a subproblem which tries to minimize the

quadratic approximation around the current point,

min
d : ||d||2≤∆k

f(xk) +∇f(xk)
Td+ dTBkd

Here, Bk is the true Hessian when we are using Newton’s method and is the symmetric rank-1 approximation

to the Hessian when we are using the SR-1 method. We solve this subproblem via the CG Steihaug

algorithm. It is not necessary for Bk to be positive definite. At every iteration, we compute the ratio of

the reduction in objective function value and the model value (ρ) and update our iterate based on this

ratio. If the ratio is too small, we cannot trust our model within the current ∆k radius, so we shrink the

radius to half its current value and skip the iterate update. If the ratio is big enough, we update our

iterate to xk + dk. If the ratio is bigger than the parameter c2 tr, we double the trust region radius for

the next iteration.

2 Default Parameters

Table 1 provides the different default parameters for our code, which are within the structure options.

There are other parameters that cannot be directly modified from the structure options, but have to be

Table 1: Default Parameters

Description Variable Value

Termination Tolerance ϵ term tol 1e–6
Maximum Iterations max iterations 1e+3
Line Search Constant c1 c1 ls 1e–4
Line Search Constant c2 c2 ls 0.9
Trust Region Constant c1 c1 tr 1e–4
Trust Region Constant c2 c2 tr 0.9
Conjugate Gradient Termination Tolerance term tol CG 1e–6
Conjugate Gradient Maximum Iterations max iterations CG 1e+3
Cholesky Subroutine Parameter β beta 1e–6
Hessian Update Threshold Parameter ϵ eps 1e–6
Initial Trust Region Radius ∆0 delta 10.0
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modified within the functions using them. These parameters include the initial step length ᾱ = 1 in a

backtracking line search, the backtracking parameter τ = 0.5, the lower and higher limits αlow = 0 and

αhigh = 1000 in the weak Wolfe line search, and the constant c used to determine α = cαlow + (1− c)αhigh

in the weak Wolfe line search.

3 Summary of Results

Tables 2a and 2b summarize the results of our experiments, in terms of number of iterations, function

evaluations, gradient evaluations and CPU seconds to solve each problem, using each algorithm. The fastest

and slowest algorithms for a given problem are highlighted in green and red respectively, unless the difference

between these times is too small to be truly indicative of speed. Recall here that an algorithm either runs

for max iterations = 1000 iterations, or terminates when ∥∇f(xk)∥∞ ≤ ϵmax {1, ∥∇f(x0)∥∞}, where ϵ

= term tol = 1e–6. An algorithm running for 1000 iterations indicates slow convergence, or the algorithm

being unable to solve that particular problem.

Further, Figures 1, 2 and 3 demonstrate the performance of all algorithms on three broadly representative

problems from the given set: (i) the 1000–dimensional quadratic problem with κ = 1000, i.e. a highly

ill-conditioned problem, (ii) the classic Rosenbrock problem, a well-known non-convex function frequently

used to benchmark unconstrained optimization algorithms, and (iii) the 5–dimensional Genhumps function,

another non-convex function with numerous ‘humps’, making optimization difficult. The metric chosen

for comparison is the profile of gradient norm with iterations, as the optimal solution f∗ may not be

known for all problems. On a general non-convex problem, the best possible outcome is convergence

to a stationary point, i.e. limk→∞ ∥∇f(xk)∥∞ = 0. While this isn’t possibly the most accurate metric,

comparisons in terms of CPU time are readily available in Tables 2a and 2b.

3.1 Discussion

We now discuss a few trends in Tables 2a and 2b. It must be noted that in general, the algorithms do

not struggle to converge to a stationary point. Many algorithms on many problems terminate within 200

iterations, and frequently do so within 0.20 seconds. In particular, Newton’s method, the two trust region

variants, and BFGS are highly reliable on any problem in the given set.

3.1.1 Difficulties

On the four quadratic problems, the condition number significantly affects the performance of algorithms.

In particular, gradient descent and DFP struggle on ill-conditioned problems, and do not converge

even after 1000 iterations. Non-convexity also significantly impacts convergence. On the 2–dimensional

Rosenbrock problem, gradient descent and DFP with a Wolfe line search do not converge, and on the

Genhumps 5–dimensional problem, DFP does not converge. This trend is however not obvious in the

Rosenbrock 100–dimensional problem, possibly because in this large scale, the starting point is very close

to the optimal solution, and the same ‘valleys’ and ‘hills’ on the 2–dimensional problem are not present

here.

These difficulties can also be seen in Figures 1, 2 and 3. Note how gradient descent and DFP (with both a

backtracking and a Wolfe line search) are not even close to convergence on the 1000–dimensional quadratic

with κ = 1000 (see Fig. 1), whereas all other algorithms have terminated before 400 iterations are complete.
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Figure 1: Performance of all methods on the 1000–dimensional quadratic problem with κ = 1000.

0 50 100 150 200
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

GD

GDW

Newton

NewtonW

TRNewtonCG

TRSR1CG

BFGS

BFGSW

DFP

DFPW

Figure 2: Performance of all methods on the Rosenbrock 2–dimensional problem

Similarly, in Fig. 2, gradient descent and DFP with a Wolfe line search are the only algorithms that

are yet to terminate after 200 iterations. The more ‘reliable’ algorithms, including BFGS and Newton’s

method, terminate in less than 50 iterations. In Fig. 3, DFP is yet to terminate after 200 iterations, and
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Figure 3: Performance of all methods on the Genhumps 5–dimensional problem

gradient descent takes the most iterations following that.

The reason for the difficulties in gradient descent are quite clear. The condition number directly determines

the rate of convergence of gradient descent for strongly convex problems, and non-convexity means that

gradient descent may struggle to find a ‘good’ descent direction. However, the reasons for difficulties in

DFP are not so clear. One possible explanation is that unlike BFGS, which minimizes the variation in the

inverse Hessian approximation from one iteration to the next, DFP minimizes the variation in the actual

Hessian approximation. There is no control over what the resulting inverse Hessian approximation may

be, and this could lead to a less reliable algorithm. In particular, the inverse Hessian approximation may

differ drastically from one iteration to the next, especially if the problem is ill-conditioned, thus directly

affecting descent directions.

3.1.2 Is there a “Best” Algorithm?

While no algorithm can claim to be the “best” unconstrained optimization algorithm on any problem,

it is evident that certain algorithms strongly outperform other algorithms, especially on this given set.

As mentioned earlier, Newton’s method, the two trust region variants, and BFGS are significantly more

reliable than gradient descent and DFP. Among these, Newton’s method with a Wolfe line search

(with the Hessian modification to ensure positive definiteness) frequently converges faster than the others.

Despite the cost of solving a linear system in each iteration, this method is among the fastest algorithms

for each problem. On all quadratics, irrespective of dimension or condition number, Newton’s method

converges in a single iteration. Even on high-dimensional problems such as the 100–dimensional Rosenbrock

or the 1000–dimensional exponential, the Hessian modification ensures fast, global convergence, in terms

of both iterations and CPU time. On all the three representative problems mentioned earlier — (i) the
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1000–dimensional quadratic problem with κ = 1000, (ii) the 2–dimensional Rosenbrock problem, and (iii)

the 5–dimensional Genhumps problem, Newton’s method with a Wolfe line search converges fastest in

terms of both iterations and CPU time. This is hence the “algorithm of choice”.

4 The Hessian Modification in Newton’s Method

This section is devoted to investigating the following question: “How much modifying is too much in

Newton’s method?”

Recall that the search direction dk in Newton’s method satisfies ∇2f(xk)dk = −∇f(xk). If ∇2f(xk) is

positive definite, then the above linear system has a unique solution dk, and this dk is a descent direction.

However, when ∇2f(xk) is not positive definite, there may be multiple solutions to the linear system,

and/or dk may not be a descent direction. To mitigate this, a multiple of the identity is added to the

Hessian at each iteration, so that the linear system now becomes
(
∇2f(xk) + ηkI

)
dk = −∇f(xk). ηk is

chosen such that the matrix
(
∇2f(xk) + ηkI

)
is positive definite, and hence dk is unique and is a descent

direction. This is accomplished by attempting a Cholesky factorization of
(
∇2f(xk) + ηkI

)
multiple

times, and updating ηk until the factorization is successful. (This is hereafter referred to as the Cholesky

subroutine.)

The motivation for investigating the above question is as follows. If ηk is very large, it effectively ensures

that dk is unique and is a descent direction. Hence, it may be tempting to set ηk to be a large constant a

priori, and forgo the complexity of choosing an appropriate ηk at each iteration. However, if ηk is too

large, we have
(
∇2f(xk) + ηkI

)
≈ ηkI, and hence the search direction is simply a scalar multiple of the

negative gradient direction. While this is the steepest descent direction for our purposes, the advantages of

Newton’s method, such as a quadratic rate of convergence, are lost. Here, we attempt to investigate what

the limits of modifying ∇2f(xk) are. In particular, we focus on the 2–dimensional Rosenbrock problem and

compare the rates of convergence for various increasing values of ηk. Further, we compare these rates to

the rate of gradient descent, and the rate obtained by the usual modification of the Hessian, obtained from

the Cholesky subroutine. We aim to find a level of values of ηk, beyond which modification of the Hessian

no longer presents the same advantages as Newton’s method, and begins to demonstrate disadvantages of

the gradient method. The Rosenbrock problem is particularly appropriate for this experiment, as the

gradient method struggles for convergence and Newton’s method does not.

The methodology adopted for controlling the modification was as follows. The Cholesky subroutine was

run on the true Hessian at the current iteration point to ensure that the resulting matrix is positive definite.

Post this subroutine, an additional λI was added to the resulting matrix where λ was the independent

variable. The resulting descent direction is then given by dk = −
(
∇2f(xk) + (ηk + λ)I

)−1∇f(xk).

It was noted that the eigenvalues for the true Hessian matrix for the Rosenbrock problem for the given

conditions and for all iterates visited were approximately in the interval (5, 50).

Figs. 4 and 5 show the performance of the method for different values of λ. Since, the true Hessian for

this problem is always positive definite for all the visited iterates, it seems that even small modifications

lead to a loss in performance. Around λ = 500, we lose the quadratic rate of convergence of Newton’s

method to a more linear rate. Around λ = 700, we are unable to converge within 1000 iterations. And

for values of λ around 1000, we tend to perform even worse than gradient descent (within the first 1000
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Figure 4: Performance measured by the norm of the gradient of Newton’s method with varying degrees of
modification and Gradient Descent on the Rosenbrock 2 problem
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Figure 5: Performance measured by the optimality of Newton’s method with varying degrees of modification
and Gradient Descent on the Rosenbrock 2 problem

iterations), with a very flat-looking optimality gap plot.

However, it is worth noting that as λ is increased, the CPU time to solve the problem (or run 1000

iterations) decreases, as can be seen in Fig. 6. This can be attributed to the Hessian becoming more and

more closer to a multiple of the identity matrix, thus making it easier to invert.
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Figure 6: CPU time and number of iterations to solve the Rosenbrock 2 problem with Newton’s method
with different degrees of modification

5 Concluding Remarks

A few concluding remarks are in order. As mentioned earlier, Newton’s method with a Wolfe line search

generally outperforms other algorithms, and is more reliable on this particular set of problems. It must be

noted that this is not a guarantee that this particular method will work well on any problem. Newton’s

method is significantly affected by scaling, and on problems with much higher dimensions, Newton’s

method is quite computationally expensive, and hence slow in terms of CPU time.

Gradient descent is possibly the easiest algorithm to code, even if used with a line search. Newton’s method

is not much harder, but requires second derivatives. The trust region methods and quasi-Newton methods

are a little harder to code, as they require updating multiple parameters in each iteration. However, these

methods are also quite reliable, and possibly scale better than Newton’s method with problem dimension.
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